
This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 1

Q-Rapids Quality Model (April 2019)

This document contains the Q-Rapids quality model offered by default in the Q-Rapids software analytics tool. It can be customized in the different companies.
The document is divided in three sections:

1. Graphical representation of the quality model
2. Description of factors, assessed metrics, raw data, and data sources
3. Description of strategic indicators and factors

Information about how to customize the quality model can be found on https://github.com/q-rapids/qrapids-eval
This document is available as an appendix of the publication “Silverio Martínez-Fernández, Anna Maria Vollmer, Andreas Jedlitschka, Xavier Franch, Lidia López,
Prabhat Ram, Pilar Rodríguez Marín, Sanja Aaramaa, Alessandra Bagnato, Michal Choras, Jari Partanen: Continuously Assessing and Improving Software Quality
With Software Analytics Tools: A Case Study. IEEE Access 7: 68219-68239 (2019)” on https://figshare.com/s/217851eed7ec1da7ab86

https://github.com/q-rapids/qrapids-eval
https://figshare.com/s/217851eed7ec1da7ab86

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 2

Graphical representation of the quality model

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 3

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 4

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 5

Factors, assessed metrics, raw data, and data sources

Quality
Aspect Factor Assessed

Metric Description Calculation Raw Data Data Source

M
ai

nt
ai

na
bi

lit
y

Code Quality

Complexity

Files below the
threshold of
cyclomatic

complexity (10
by default)

Density of non − complex files =
Non − Complex files
Total number of files

where a file is complex if the <cyclomatic complexity> per <function> is greater
than <10>.

Cyclomatic
complexity per

function of each file,
total number of files

SonarQube

Comments

Files whose
comment
density is

outside the
defined

thresholds (by
default 10%-

30%)

Density of commented files =
Commented files

Total number of files

where a file is commented if the < density of comment lines> is between 10% and
30%

Density of comment lines =
Comment lines

(Lines of code + Comment lines)

Density of comment
lines and lines of
code per each file

SonarQube

Duplication

Files below the
threshold of

duplicated lines
percentage

Absence of duplications =
Files without duplications

Total number of files

where a file has no duplications if the < density of duplication> is less than 5%

Density of duplication =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Lines

Duplicated lines and
lines of code per file SonarQube

Blocking
Code

Non-blocking
files

Files without
critical or

blocker quality
rule violations

Fulfillment of critical/blocker quality rules

=
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 Total number of files

Number of quality
rule violations per

file and their severity
(blocker, critical,

major, minor, info)
and type (code smell,

bug, vulnerability)

SonarQube,
Coverity,

CodeSonar

Quality
Issues’
Specification

Well defined
issues

Density of
issues that have
good definition

Well defined issues =
Well defined issues

Issues

where an issue is well defined if the fields {<description>, <due date>} are not
empty

Fields of each issue
(e.g., description, due

date, assignee,
estimated time)

Jira, GitLab,
Redmine,

Mantis

R
el

ia
bi

lit
y Testing Status Test success Unit test

success density
Passed tests =

(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − (𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓))
Unit tests

Number of unit test

errors, failures,
skipped, and total

Jenkins,
GitLab

Testing
Performance Fast tests

Test builds
below the
duration
threshold

Density of fast tests’ builds =
Fast unit test

Unit tests

Duration of unit test
execution, tests
conforming to a

pipeline

Jenkins,
GitLab

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 6

Quality
Aspect Factor Assessed

Metric Description Calculation Raw Data Data Source

where an unit test is fast if its duration is lower than <5 minutes>

Software
Stability Bug density

Ratio of open
issues of the

type bug with
respect to the

total number of
issues within a

customized
timeframe

Ratio of bugs

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖/𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝑟𝑟𝑟𝑟 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 "𝑏𝑏𝑏𝑏𝑏𝑏"

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖/𝑖𝑖𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝑟𝑟𝑟𝑟 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
∗ 100

Total number of
issues (a.k.a. tasks)

per status (e.g., open,
done), type (e.g., bug,

maintenance,
feature), and

timeframe (e.g.,
current/last month or

current/last sprint)

Jira, GitLab,
Redmine,

Mantis

Known
Remaining
Defects

Postponed
Issues Ratio

Ratio of non-
critical issues
that are not

closed

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 Total no. of open and
closed issues with

low severity
Mantis

Product
Stability

Critical Issues
Ratio

Ratio of critical
issues that have

been closed
=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 ℎ𝑖𝑖𝑖𝑖ℎ − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 ℎ𝑖𝑖𝑖𝑖ℎ − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Total no. of open and

closed issues with
high severity

Mantis

Build Stability Density of
successful

builds
=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

Number of successful
builds and total

number of builds
Jenkins

Fu
nc

tio
na

l
Su

ita
bi

lit
y

External
Quality

End user
feedback

Density of end
user feedback
related to an

issue in a given
timeframe

=
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

where the “customer” field is not empty

All the feedback
received in a

timeframe (week,
month, etc.) and the

total number of
feedback

Mantis

Pr
od

uc
tiv

ity

Issues’
Velocity

Resolved
Issues’
Throughput

Density of
issues whose

resolution didn't
take longer than

the defined
duration
threshold

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

where the duration threshold is user defined

Total number of
issues with resolved
status (e.g. sprint,
week, month) and

total issues in
timeframe

Jira, Mantis,
GitLab

Issues-type in a
timeframe

Density of
issues of a

specific type
within a defined

timeframe

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

where type = resolved, open, task, bugs, etc.

Total number of
issues with type (e.g.

open, closed,
resolved, task, bugs)

and total issues in
timeframe (sprint,

week, month)

Jira, Mantis,
GitLab

Team
Throughput

Density of
issues resolved
by a team in a

given
timeframe

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Total number of
issues (a.k.a. story
points) with status
resolved/completed
and total issues in
timeframe (sprint,

week, month)

Jira

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 7

Quality
Aspect Factor Assessed

Metric Description Calculation Raw Data Data Source
Bugs Ratio Density of open

issues not being
bugs

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Total number of
issues with status
open, total no. of

issues of type bug,
and total no. of issues
in timeframe (sprint,

week, month)

Jira, Redmine

Old Issues Density of
issues of a

given priority
older than the

defined creation
threshold

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

where the duration threshold is user defined

Total number of
issues (a.k.a. story
points) with any

status older than a
threshold and total

issues total issues in
timeframe (sprint,

week, month)

Jira

Activities
Completion

Development
Task
Completion

Density of
project tasks

that have been
completed

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

All project tasks that
are completed, and

total number of
project tasks.

OpenProject

Specification
Task
Completion

Density of
specification

tasks that have
been completed

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

All specification tasks

that are completed,
and total number of
specification tasks.

OpenProject

Development
Speed

Build
performance

Density of daily
builds that
didn't take

longer than the
defined
duration
threshold

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

where the duration threshold is user defined

Every build with
build duration under
a threshold, and total
number of builds in
timeframe (week,

month, sprint, etc.)

Jenkins

Avg.
Automation
Duration

Density of
automated tests
that didn't take
longer than the

defined
duration
threshold

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

where the duration threshold is user defined

Every automated
tests with test

duration under a
threshold, and total

number of automated
tests in timeframe

(week, month, sprint,
etc.)

Jenkins

Commit review
duration

Average
commit review

speed for a
period

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

where the duration threshold is user defined

Every commit review
with duration under a
threshold, and total
number of commit

reviews in a
timeframe (week,

month, sprint, etc.)

Gerrit

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 8

Quality
Aspect Factor Assessed

Metric Description Calculation Raw Data Data Source
Timely feature
specifications
delivery

Density of
feature

specifications
delivered on
time during

development
cycle

=
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

where an issue is a feature specifications if the “description” field has
“specification” value, and is delivered on time if the “ontime” field doesn’t have “F”

All the feature
specifications

delivered on time,
and total feature

specifications
delivered

OpenProject

Timely feature
delivery

Density of
feature

delivered on
time during

development
cycle

=
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

where an issue is a feature if the “description” field has “specification” value, and is
delivered on time if the “ontime” field doesn’t have “F”

All the feature
delivered on time,
and total features

delivered OpenProject

Core
component
commits

Density of core
component

commits in a
given

timeframe
before the

planned release

=
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑇𝑇𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

where a commit is on a core component if the “filename” field points to “.bpmn”
files

All the commits on
core component in a

timeframe (week,
month, etc.) and the
total commits made

on the core
components

SVN

Non-issue
component
commit

Density of
commits that

are not related
to an issue

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

here, “issue” refers to actual issue in the code, and not the Jira terminology for a tickt

All the commits not
related to any issue,

and total no. of
commits in a

timeframe (week,
sprint, month, etc.)

SVN

Testing
Performance

Error
identification

Density of
errors identified

in a given
timeframe

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

All the issue of type
error/bug in a

timeframe (week,
month, sprint, etc.),

and total issues of all
type since start of the

project

Jira

Error correction Density of
errors that were
corrected within

the defined
duration
threshold

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

where the duration threshold is user defined

All the issue of type
error/bug with status

resolved within a
duration threshold,

and total errors/bugs
resolved in a

timeframe (week,
month, sprint, etc.)

Jira

Bug leakage Density of bugs
identified after

the release
=

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

where bugs after the release are identified as customer-reported issues that does not
have the keyword “feature”

All the bugs reported
by the customer after
the release, and total

number of bugs
identified before the

release

Mantis

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 9

Quality
Aspect Factor Assessed

Metric Description Calculation Raw Data Data Source
Fast Tests Density of tests

that are under
the testing
duration
threshold

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

where the duration threshold is user defined

All the tests within
execution duration

within the threshold,
and total tests
executed in a

timeframe (week,
month, sprint, etc.)

Mantis

Long Tests Density of tests
over the testing

duration
threshold

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

where the duration threshold is user defined

All the tests within
execution duration
over the threshold,

and total tests
executed in a

timeframe (week,
month, sprint, etc.)

Jira

Developer-
Tester
Communication

Density of
developer-tester
communication
on a given issue

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

All the feedbacks on
an issue, and total

feedbacks for all the
issues

Mantis

Commit
Review
Iterations

Density of
commits whose
reviews didn't

exceed the
defined
iteration
threshold

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

where the iteration threshold is user defined

Every commit review
with iterations under

the threshold, and
total number of

commit reviews in a
timeframe (week,

month, sprint, etc.)

Gerrit

Commit
Response Time

Density of
commits whose
response time
wasn't longer

than the defined
duration
threshold

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

where the duration threshold is user defined

Every commit with
response time within

the threshold, and
total number of

commits in a
timeframe (week,

month, sprint, etc.)

Gerrit

Test Per
Product

Average
number of test
executed for a
product in a
timeframe

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

All the tests executed
for every issue, and

total issues tested in a
timeframe (week,

month, sprint, etc.)

Jenkins

CI Feedback
Time

Average
feedback time

from CI system
=
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Every build with

feedback duration,
and total builds in a

timeframe

Jenkins

Unit Test
Duration

Density of unit
tests that do not
take longer than

the defined
threshold

=
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

where the duration threshold is user defined

All the unit tests
executed in under
defined threshold,
and total unit tests

executed in a
timeframe (week,

sprint, month, etc.)

Jenkins

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 10

Strategic Indicators and Factors
Strategic
Indicator

Definition Factor Description Type User story Actionable analytics

Product Quality

It refers here to the
maintainability,
reliability, and
functional
suitability of your
software product.

Code Quality

It measures the impact of
code changes in source

code quality

Product Factor Developers, code guardians, and
integrators want to gather data about the
impact of code changes on code quality,
so that they can manage maintainability

resources.

Code quality is actionable
when the product owner
decides to invest a cycle
into maintainability and

understandability.

Software Stability

It measures the most
critical issues

Product Factor Product directors and quality managers
want to gather data about the most

critical issues at runtime, so that they
can maintain efficient service

capability/quality/prioritization.

Actionable analytics for
software stability include
the urgent generation of
alerts when a fault has

occurred.

Software Usage
It measures the usage

pattern of a
feature/software

Product Factor Product directors and product owners
want to gather data about the product

usage (e.g., total time spent on
functionalities, and functionalities used
most/least), so that it makes completely
clear how heavily each feature is used
by customers and in which order the

features should be prioritized for
inclusion.

An example of an action
point for software usage is

the removal of features
that are not used in the

software product.

Blocking It refers to
conditions that
negatively affects
the progress of your
project workflow.
Blocking situations
are e.g. stop-the-
line, postpone a
feature, … .

Quality Issues'
Specification

It measures the state in
which final information

of a feature is included in
the backlog, and hence it
is ready to be developed.

Product Factor Developers and testers want to gather
data about the state of the issues

description that enter the backlog, in
order to enable tracing of these tickets
to story points, epics, and/or features

An action point here
could be improving the

practice of describing the
issues well before they are

taken up in a sprint

Testing Status

It measures the quality
and stability level of
executed tests during

development.

Product Factor Test managers, quality assessors, and
integrators want to gather data about the
quality and stability level of testing, so
that tests meaningful on the one hand

and not skipped on the other hand.

Action points for testing
status include improving
tests that do not detect

critical bugs during
development, or
improving the

performance of the test
pipeline.

Blocking Code

It measures the technical
debt of software code, in

terms of quality rule
violations

Product Factor Developers, code guardians, and
integrators want to gather data about

code changes, so that they can identify
new quality issues and blocking code.

Action points for blocking
code include resolving

blocker quality rule
violations or refactoring

highly changed files (e.g.,
God objects or

configuration files).
Process
Performance

It refers to your
sotware devlpment
lifecycle processes’
efficiency and
quality

Issues’ Velocity

The capability of
fulfilling the issues

planned for a
sprint/iteration

Process Factor Product owners and project managers
want to gather data about content

delivered at feature build compared to
planned content on exit, so that they can
see the planning capability and accuracy

of the team.

Actionable analytics for
issues’ velocity require
updates for the process,
such as learning from
inaccurate planning or
estimation, in order to

better plan the next

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 11

Strategic
Indicator

Definition Factor Description Type User story Actionable analytics

cycles, or specifying how
to use the issue tracking

system.

Testing Performance

The capability of
effectively and efficiently

carrying out testing
activities

Process Factor Test managers, quality assessors, and
integrators want to gather data about the
cost-benefit ratio of testing against the

resources used, so that they can
optimize the use of resources and target

efficiency in testing

Action pointss could
include more exhaustive

testing to detect and fix as
many defects as possible

before release, or
shortening commit review

duration

Development Speed It measures the CI related
activities

Process Factor Developers, Integrators, Product
owners, and project managers want to
gather data about resources consumed
as part of CI activities and automated
testing performance, so that they can
tweak and optimize their daily build
process and improve its efficiency

Action points could
include increasing build

frequency,
improving commit review

throughput

External Quality
It measures the software
quality from customer’s

viewpoint

Process Factor Product owners and product directors
want to gather data about their software
quality as reported by the end users, so
that they can act on the information and
incorporate them in the next software

iteration

Action points here could
include enhancing and

adopting a more
exhaustive testing strategy

to capture all possible
defects before product

release
Product Readiness Product Readiness

provides high level
information on
product readiness
for the next release.
A product “ready to
be released” is a
product which
implements the
features planed in
the release and
without blocking
issues.

Activities Completion

This factor represents the
status of the completion
of activities plan for this

release, including
development and
specification tasks

Process Factor

Product owners and product directors
want to gather data about the status of the
development in terms of tasks’
completion so that they can act on the
process if needed to facilitate a more
timely delivery schedule

Action points here could
be prioritizing pending
tasks to meet delivery

schedules, and
allotting more resources
to resolve pending tasks

to meet delivery
schedules

Code Quality
It measures the impact of
code changes in source
code quality

Product Factor

Developers, code guardians, and
integrators want to gather data about the
impact of code changes on code quality,
so that they can manage maintainability
resources.

Code quality is actionable
when the product owner
decides to invest a cycle
into maintainability and
understandability.

Product Stability

It measures the most
critical issues Product Factor

Product directors and quality managers
want to gather data about the most
critical issues at runtime, so that they can
maintain efficient service
capability/quality/prioritization.

Actionable analytics for
software stability include
the urgent generation of
alerts when a fault has
occurred.

Known Remaining
Defects

Bugs or defects that are
outside of the major bug
category that can be
deferred

Process Factor

Developers, code guardians, and
integrators want to gather data about the
density of minor bugs or defects that can
be deferred for fixing in later releases.

Action points here would
be deferment of minor
bugs resolution until the
next release

	Q-Rapids Quality Model (April 2019)
	Factors, assessed metrics, raw data, and data sources
	Strategic Indicators and Factors

