
This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 1

D1.2 Data gathering and analysis proof-of-concept
V1.0

Programme H2020

Funding scheme RIA - Research and Innovation action

Topics ICT-10-2016 - Software Technologies

Project number 732253

Project name Quality-aware rapid software development

Project duration 1st November 2016 – 31st October 2019

Project website www.q-rapids.eu

Project WP WP1 – Data Gathering and Analysis

Project Task Task 1.2 – Data gathering concept and implementation
Task 1.4 – Data Analysis concept and implementation

Deliverable type R Document, report

 X DEM Demonstrator, pilot, prototype

 DEC Websites, patent fillings, videos, etc.

 OTHER Material that does not belong to any specified category

 ETHICS Ethics requirement

Contractual delivery 31/01/2018

Delivered 31/01/2018

Responsible beneficiary Organisation

Dissemination level X PU Public

 CO Confidential, only for members of the consortium (including the Commission
Services)

 EU-RES Classified Information: RESTREINT UE (Commission Decision 2005/444/EC)

 EU-CON

Classified Information: CONFIDENTIEL UE (Commission Decision
2005/444/EC)

 EU-SEC Classified Information: SECRET UE (Commission Decision 2005/444/EC)

http://www.q-rapids.eu/

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 2

Version history

Version
no.

Date Description Author

V0.1 18/12/2017 Initial structure of the document Silverio Martinez (Fraunhofer
IESE)

V0.2 10/01/2018 Updated structure of the document Andreas Jedlitschka, Silverio
Martinez (Fraunhofer IESE)

V0.3 12/01/2018 Updates based on internal reviewers
feedback

Silverio Martinez (Fraunhofer
IESE)

V0.4 19/01/2018 Pre-final version for internal review Silverio Martinez, Axel
Wickenkamp (Fraunhofer IESE)

V0.41 24/01/2018 Adding internal reviews and demonstration
of GitLab

Silverio Martinez (Fraunhofer
IESE), Michal Choras (ITTI)

V0.5 26/01/2018 Version addressing the internal reviews Silverio Martinez (Fraunhofer
IESE)

V1.0 31/01/2018 Final version (v1.0) Silverio Martinez (Fraunhofer
IESE)

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 3

Authors

Organisation Name

Fraunhofer IESE Silverio Martinez

Fraunhofer IESE Andreas Jedlitschka

Fraunhofer IESE Axel Wickenkamp

Reviewers

UPC Lidia Lopez

Bittium Jari Partanen

Disclaimer

The work associated with this report has been carried out in accordance with the highest technical standards and the

Q-Rapids partners have endeavoured to achieve the degree of accuracy and reliability appropriate to the work in

question. However, since the partners have not control over the use to which the information contained within the

report is to be put by any other party, any other such party shall be deemed to have satisfied itself as to the suitability

and reliability of the information in relation to any use, purpose or application.

Under no circumstances will any of the partners, their servants, employees or agents accept any liability whatsoever

arising out of any error or inaccuracy contained in this report (or any further consolidation, summary, publication or

dissemination of the information contained within this report) and/or the connected work and disclaim all liability for

any loss, damage, expenses, claims or infringement of third party rights.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 4

Definition of the key terms and abbreviations

A term or an
abbreviation
(alphabetical order)

Explanation of the term or the abbreviation

Apache Kafka

Apache Kafka is an open-source stream processing platform developed by the
Apache Software Foundation written in Scala and Java. The project aims to
provide a unified, high-throughput, low-latency platform for handling real-time
data feeds. Its storage layer is essentially a massively scalable pub/sub message
queue architected as a distributed transaction log, making it highly valuable for
enterprise infrastructures to process streaming data

Assessed metric
A concrete description of how a specific product factor should be quantified
for a specific context.

Elasticsearch
Elasticsearch is a search engine based on Lucene. It provides a distributed,
multitenant-capable full-text search engine with an HTTP web interface and
schema-free JSON documents.

ELK stack or Elastic Stack

Elasticsearch is developed alongside a data-collection and log-parsing engine
called Logstash, and an analytics and visualisation platform called Kibana. The
three products are designed for use as an integrated solution, referred to as
the "Elastic Stack" (formerly the "ELK stack").

Product factor
Attributes of parts of the product. They need to be concrete enough to be
measured.

qr-connect A module of the Q-Rapids tool for data gathering.

qr-eval A module of the Q-Rapids tool for data analysis.

Quality model
The main purpose of a quality model is to link the data gathered from some
data sources to the strategic indicators.

Quality model
assessment

The operationalisation and execution of a quality model with specific
values/measures for all its elements in a timestamp: strategic indicators,
product factors, and assessed metrics.

Raw data
Raw data are the data as it comes from the different data sources (without any
modification). Typically it cannot be broken down into simpler or more granular
forms of data.

Strategic indicator An aspect that a company considers relevant for the decision-making process.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 5

Contents
The list of tables .. 6
The list of figures ... 7
Executive summary.. 8
1. Introduction ... 9

1.1 Motivation ... 9
1.2 Intended audience ... 9
1.3 Scope ... 9
1.4 Relation to other deliverables ... 9
1.5 Structure of the deliverable .. 10

2. Q-Rapids Tool: Data Gathering and Analysis ... 10
2.1 Overview: Q-Rapids Tool Architecture .. 10
2.2 Data Gathering and Analysis Modules .. 10

Data gathering: the qr-connect module .. 12
Data analysis: the qr-eval module ... 12

3. Data Gathering and Analysis Implementation .. 15
3.1 Progress on User Stories for Data Gathering .. 15
3.2 Progress on User Stories for Data Analysis.. 17
3.3 Evaluation of Technical Aspects .. 18

Evaluation of technical aspects ... 18
Challenges faced during the Q-Rapids tool deployment in the use cases .. 18

4. Demonstration of Data Gathering and Analysis .. 20
4.1 Demonstration of Data Gathering User Stories .. 20

Start Apache Kafka .. 20
SVN Connector ... 21
Jenkins Connector.. 23
Sonarqube Connector .. 24
Jira Connector .. 26
Redmine Connector ... 27
GitLab connector ... 28

4.2 Demonstration of Data Analysis User Stories ... 29
Assessed Metrics ... 29
Product Factors .. 30
Strategic Indicators .. 32
Performing the quality model assessment .. 33
Elasticsearch API: Access ... 33

5. Data Gathering and Analysis Software and Installation .. 35
5.1 Q-Rapids Data Gathering and Analysis Modules: Download .. 35
5.2 Development, Communication and Support among Q-Rapids Partners .. 35

Conclusion ... 36
Annex A – Quality Model for the Proof-of-Concept .. 37

Blocking ... 37
Product Quality .. 38

Annex B – Data Gathering and Analysis Modules Installation and Use (Axel) .. 40
How to deploy the Q-Rapids Source Data Connectors: the qr-connect module .. 40

Prerequisites .. 40
QR-Connect Framework .. 40
SVN Source Connector ... 41
Jenkins Source Connector.. 43
Jira Source Connector .. 46
Sonarqube Source Connector .. 48

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 6

Redmine Source Connector ... 53
GitLab connector (alternative in the ITTI use case) ... 55

How to define the quality model indexes in Elastic. ... 63
How to customise the quality model and perform the quality model assessment: the qr-eval-module ... 66

Setup .. 66
Run ... 66

The list of tables
Table 1. Structure of qr-connect and qr-eval modules. .. 11

Table 2. Connectors of qr-connect module. .. 12

Table 3. Progress on the user stories for data gathering from D1.1. .. 16

Table 4. Progress on the user stories for data analysis from D1.1. ... 17

Table 5. Example of configuring the connection of a connector to a data producer: SVN repository. 21

Table 6. Example of a connection to an Elasticsearch server. .. 21

Table 7. An excerpt of the metrics.properties file. An example for “non-complex files” and “commented

files”. .. 29

Table 8. The factors.properties file, containing the product factors. ... 30

Table 9. An excerpt of the indicator.properties file, containing the strategic indicators. 32

Table 10. Quality model for the proof-of-concept: blocking strategic indicator. ... 37

Table 11. Quality model for the proof-of-concept: product quality strategic indicator. 38

Table 12. Data gathered about commits with the svn connector: attributes, descriptions, and examples. .. 41

Table 13. Data gathered about builds of projects with the Jenkins connector: attributes, descriptions, and

examples. ... 43

Table 14. Data gathered about issues with the Jira connector: attributes, descriptions, and examples. 46

Table 15. Data gathered about measures with the SonarQube connector: attributes, descriptions, and

examples. ... 48

Table 16. Data gathered about quality rules issues with the SonarQube connector: attributes, descriptions,

and examples. .. 50

Table 17. Data gathered about issues with the Redmine connector: attributes, descriptions, and examples.

 ... 53

Table 18. Metrics index mapping. ... 63

Table 19. Factors index mapping. .. 64

Table 20. Strategic indicators index mapping. .. 64

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 7

The list of figures
Figure 1. Conceptual architecture of the Q-Rapids system. .. 10

Figure 2. Data gathering and analysis modules. .. 11

Figure 3. Quality model for the proof-of-concept: the “product quality” strategic indicator. 13

Figure 4. Quality model for the proof-of-concept: the “blocking” strategic indicator. 14

Figure 5. Examples with the computation of the assessed metrics: “commented files” and “non-complex

files” of code quality (product quality strategic indicator). .. 15

Figure 6. Start Zookeper. ... 20

Figure 7. Start Kafka. ... 20

Figure 8. Example of starting a connector: connect-svn. .. 22

Figure 9. Commit data gathered by the connect-svn connector and stored in the svn elastic search index. 22

Figure 10. Test data gathered by the connect-jenkins connector and stored in the jenkins elastic search

index. ... 23

Figure 11. Issues (i.e., quality rules violations) data gathered by the connect-sonarqube connector and

stored in the sonarqube.issues elastic search index. .. 24

Figure 12. Static code analysis measures data gathered by the connect-sonarqube connector and stored in

the sonarqube.measures elastic search index. ... 25

Figure 13. Issues (i.e., tasks) data gathered by the connect-jira connector and stored in the jira elastic

search index. .. 26

Figure 14. Issues (i.e., tasks) data gathered by the connect-redmine connector and stored in the redmine

elastic search index. .. 27

Figure 15. The schema of gitlab.stats.<project name> index .. 28

Figure 16. The assessed metrics from quality model assessments: the poc.metrics elastic search index. 30

Figure 17. The product factors from quality model assessments: the poc.factors elastic search index. 31

Figure 18. The strategic indicators from quality model assessments: the poc.strategic indicators elastic

search index. .. 32

Figure 19. Example of an execution of a quality model assessment for the day 19.01.2018. 33

Figure 20. Accessing the quality model assessment via Elasticsearch Search API. ... 34

Figure 21. GitLab connector configuration file. ... 56

Figure 22. Relation between issue and its notes ... 57

Figure 23. Example of Issue note object.. 57

Figure 24. Example of issue object .. 58

Figure 25. Example conversation (on GitLab) composed of issue notes. .. 59

Figure 26. Example of FMS of an issue. Created is an initial state, while the Closed is a terminal state. 60

Figure 27. Example shown how we calculate daily snapshot statistics for the entire project. 61

Figure 28. Metrics assessing the development part: number of tasks in backlog, number of task being under

development, and number of tasks waiting for testing (the values are shown as average calculated for a

period of a sprint). ... 61

Figure 29. Metrics assessing the performance of testing. .. 62

Figure 30. Example of global metrics characterizing general advancement of the project. 62

Figure 31. Defining quality model indexes in ELK. ... 65

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 8

Executive summary
The D1.2 is an output of the “Data gathering concept and implementation” (T1.2) and “Data Analysis concept

and implementation” (T1.4). It is a demonstrator to show the current status of the Q-Rapids tool at the end

of the proof-of-concept at month 15. The objective of this document is to provide the description of a first

set-up of the architecture for data gathering and analysis as a proof of concept. Bearing this goal in mind,

this document mainly provides:

 An update of the data gathering and analysis architecture (from the previous D1.1 and synchronised

with D3.2, D4.4).

 A report on the implementation progress made on epics and user stories for the Q-Rapids data

gathering and analysis tool.

 A demo of the deployment of the data gathering and analysis modules of the Q-Rapids tool.

 The software solution, including:

o source code,

o data gathering and analysis installation package and documentation.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 9

1. Introduction
The overall goal of this document is to provide a demonstration of a first set-up of the architecture and

running modules for data gathering and analysis during the proof-of-concept phase.

1.1 Motivation
Q-Rapids is a data-driven project. This means that in order to assess the level of software quality during

development and at runtime, we firstly need to gather and analyse data about that software. This deliverable

explains the implemented software to perform data gathering and analysis with a Q-Rapids tool. It includes:

 An update of the data gathering and analysis architecture (from the previous D1.1 and synchronised

with D3.2, D4.4).

 A report on the implementation progress made on epics and user stories for the Q-Rapids data

gathering and analysis tool.

 A demonstration of the deployment of the data gathering and analysis modules of the Q-Rapids tool.

 The software solution, including:

o source code,

o data gathering and analysis installation package and documentation.

1.2 Intended audience
This deliverable is a report produced for all the members of the Q-Rapids project. Specifically, the results of
this report are interesting and useful for the following stakeholders:

 The industry partners (i.e., Bittium, Softeam, iTTi, NOKIA), who deployed the data gathering and
analysis modules to perform an initial assessment of the level of software quality of their use cases.

 The WP2-WP3-WP4-WP5 researchers, who are provided with the quality model, and the data
gathering and analysis implementation. These artefacts become necessary to operationalise the
quality model assessments in the use cases.

1.3 Scope
The scope of this document is the entire Q-Rapids project. This version of the document is a result of the

second phase of WP1: the proof-of-concept (from month 7 to month 15). It is used only for demonstration

purposes in this phase. Next phases of the Q-Rapids project will have their own demonstration: M24

(prototype), M33 (consolidation), M36 (final release).

1.4 Relation to other deliverables
This deliverable strongly relates to previously produced deliverables:

 Deliverable 1.1, describing the data gathering and analysis specification (the Deliverable 1.1 will be
updated in M18 and M33).

 Deliverable 3.1, including an ontology containing terms used in WP1 and this document.

 Deliverables 4.2 and 4.3, describing the integration of the entire Q-Rapids tool.

 Deliverables 5.1 and 5.2, reporting the evaluation strategy of the Q-Rapids tool.

Also, the present document relates to contemporary deliverables:

 Deliverable 3.2, including a demonstration of the dashboard highly connected with the results from
this document.

 Deliverable 4.4, summarizing the proof-of-concept of the entire Q-Rapids solution.

 Deliverables 5.3, describing the use cases deploying the Q-Rapids tool (whose data gathering and
analysis modules are reported here).

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 10

1.5 Structure of the deliverable
This document is structured as follows. Section 2 describes the Q-Rapids tool architecture, and deeps into

the data gathering and analysis modules implementing the quality model for the proof-of-concept and its

operationalisation. Section 3 describes the progress made and reports technical aspects. Section 4 shows the

flow of the data gathering and analysis modules through screenshots. Section 5 contains the links to

download the delivered software as well as installation and use documentation. Finally, the conclusions are

reported.

2. Q-Rapids Tool: Data Gathering and Analysis
This section describes the Q-Rapids tool architecture and deeps into its data gathering and analysis modules.

2.1 Overview: Q-Rapids Tool Architecture
The conceptual architecture of the Q-Rapids tool is shown in Figure 1. It shows the data flow from the data

producers, to its analysis and visualisation. The raw data from the data producers feed the distributed data

sink and data analysis and processing layers. For this purpose, we developed the connectors enabling

acquisition from the data producers. The Distributed Data Sink is fed through Kafka Cluster as the Data

Ingestion layer. Synchronized data is preliminarily processed, filtered and anonymized. Synchronization can

be done with different time intervals (e.g., once a day) both automatically and manually.

Figure 1. Conceptual architecture of the Q-Rapids system.

2.2 Data Gathering and Analysis Modules
In this subsection, we focus on the data gathering and analysis modules of the whole Q-Rapids tool.

The main goals of the data gathering and analysis modules are:

- to gather real data from several data sources, and,

- to analyse the collected data and operationalise quality model assessments.

Therefore, in the proof-of-concept stage, the main outputs of the data gathering

and analysis modules are the daily executed and operationalised quality model

assessments.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 11

To achieve these goals, the data gathering and analysis has two modules, which are implemented as a Java

projects in eclipse (see Figure 2 and Table 1):

1. “qr-connect”: It consists of several Kafka connectors to gather data from data producers (connect-

jenkins, connect-jira, connect-redmine, connect-sonarqube, connect-svn) and push this data to elastic

(connect-elastic).

2. “qr-eval”: It performs the quality model assessment based on the gathered raw data by qr-connect.

These two modules (qr-connect and qr-eval) rely on existing Big Data technologies. First, an Apache Kafka

cluster serving as primary ingestion layer and messaging platform. Second, an ELK stack

(Elasticsearch/Kibana) used for data indexing and analysis purposes.

Figure 2. Data gathering and analysis modules.

Table 1. Structure of qr-connect and qr-eval modules.

qr-connect qr-eval

[Cluster]

connect-jira

connect-jenkins

connect-sv n

Subversion

connect-sonarq

connect-redmine

connect-

elastic

Dashboard

qr-eval

qr-connect

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 12

Data gathering: the qr-connect module
This module includes several Kafka connectors. Table 2 briefly summarises their functionality.

Table 2. Connectors of qr-connect module.

Connector Functionality
connect-jenkins This connector reads data of the builds (e.g., passed) and tests (e.g., failed, skipped, and

duration) from the API of Jenkins1. The information is accessed by a Rest Invoker directly
accessing a JSON document, located in http. It needs authentication.
You merely need to perform an HTTP request on:
JENKINS_URL/job/<JOBNAME>/<BUILD_NUMBER>/api/json
This is done from the poll() method in JenkinsSourceTask.java

connect-jira This connector reads all the features from each issue (e.g., description, assignee, and due date)
from the API of Jira2. The information is accessed by an HTTP request on:
JIRA_URL/rest/api/2/search?jql=updated>”MostRecentUpdate”AND+project="ProjectKey”+orde
r+by+updated+ASC
This is done from the poll() method in JiraSourceTask.java

connect-
redmine

This connector reads all the features from each issue (e.g., description, assignee, and due date)
from the Redmine REST API3. The information is accessed by an HTTP request on
REDMINE_URL/issues.json ?sort=updated_on:asc&updated_on=>= …
This is done from the poll() method in RedmineSourceTask.java

connect-
sonarqube

This connector reads all static code analysis measures (e.g., cyclomatic complexity of
files/directories/projects) and quality rules (e.g., from the Sonarway default quality profile) from
the API of SonarQube4. The information is accessed by several HTTP request (e.g.,
SONARQUBE_URL/api/measures/component_tree?metricKeys= …
This is done from the poll() method in SonarqubeSourceTask.java

connect-svn This connector reads a version control log. An open source java library5 is reused.
This is done from the poll() method in SubversionSourceTask.java

connect-elastic A connector included in the confluent OSS Kafka distribution that reads data from Kafka and
puts it into the Elastic stack.

As an alternative approach to data ingestion with Apache Kafka, in the ITTI use case and the GitLab data

source, we have implemented the collection of information using a mixture of Node.js and MongoDB

frameworks. Using JavaScript, we periodically pool the GitLab RESTful interface to retrieve the raw data, as

well as to process and store information in MongoDB. Similarly, we use JavaScript scripts to periodically push

the pre-processed data the ElasticSearch platform.

A demonstration of the functionalities of the qr-connect module is available in Section 4.1.

Data analysis: the qr-eval module
This module includes:

1. The static view of the quality model (i.e., the relationships among relevant strategic indicators,

product factors, and assessed metrics).

1 Jenkins API: https://wiki.jenkins.io/display/JENKINS/Remote+access+API
2 JIRA API: https://docs.atlassian.com/software/jira/docs/api/REST/6.0.1/
3 Redmine API: http://www.redmine.org/projects/redmine/wiki/Rest_api
4 SonarQube API: https://docs.sonarqube.org/display/DEV/Web+API#WebAPI-HTTPBasicAccess
5 SVN Kit Java library https://svnkit.com/

https://wiki.jenkins.io/display/JENKINS/Remote+access+API
https://docs.atlassian.com/software/jira/docs/api/REST/6.0.1/
http://www.redmine.org/projects/redmine/wiki/Rest_api
https://docs.sonarqube.org/display/DEV/Web+API#WebAPI-HTTPBasicAccess
https://svnkit.com/

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 13

2. The functionalities to produce the operationalised quality model assessments (i.e., the

operationalisation and execution of a quality model with specific values/measures for all its elements

in a timestamp: strategic indicators, product factors, and assessed metrics).

3. The capabilities to access the full operationalised quality model from other modules or external

systems.

We respectively show these three aspects below.

Quality model: static view

In the proof-of-concept, the hierarchy of the quality model has four levels:

 Strategic indicator: An aspect that a company considers relevant for the decision-making process.

 Product factors: Attributes of parts of the product. They need to be concrete enough to be measured.

 Assessed metric: A concrete description of how a specific product factor should be quantified for a

specific context.

 Raw data and data sources: Raw data are the data as it comes from the different data sources

(without any modification). Typically it cannot be broken down into simpler or more granular forms

of data.

In the beginning of the proof-of-concept phase (month 7), it was decided in the plenary meeting held in

Kaiserslautern that the proof-of-concept should be scoped to two strategic indicators: product quality, and

blocking. Below, we show two static views of the quality model for product quality (see Figure 3) and blocking

(see Figure 4). For the proof-of-concept, this scoped quality model has been deployed in the four use cases

of the Q-Rapids project. Further details about the calculation of assessed metrics are shown in Annex A. The

deliverable D5.3 about the evaluation of the use cases contains further details about the usage of both the

quality model and its assessments by the companies (evaluations and feedback). As an activity during these

evaluations, an explanatory video showing the quality model was presented.

Figure 3. Quality model for the proof-of-concept: the “product quality” strategic indicator.

Product Quality

Code Quality

Commented files
Comments lines,
lines of code,…

SonarQube

Non-complex
files

File cyclomatic
complexity, No.

functions,…
SonarQube

Absence of
duplications

Duplicated lines,
lines of code,…

SonarQube

Testing Status Passed tests
Unit tests errors,

Unit tests
passed, …

Jenkins, GitLab

Software stability
Ratio of open/in

progress bugs

No. of open
bugs, No. of

open issues,…

JIRA, Redmine,
GitLab

Strategic
Indicator

Product
Factor

Assessed
Metric

Raw Data
Data

Source

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 14

Figure 4. Quality model for the proof-of-concept: the “blocking” strategic indicator.

The static view of the quality model is stored in the .properties files of the qr-eval module. In these files, the

user can indicate which product factors belong to which strategic indicators, which assessed metrics to which

product factors, and customise the thresholds of the assessed metrics (see a demo in Section 4.2).

Quality model assessment execution

The quality model assessment (also known as operationalisation or execution of the quality model) consists

of:

1. The computation of assessed metrics based on raw data coming from data sources. For this,

concrete formulas and utility functions are needed.

2. The aggregation of:

a. Assessed metrics into product factors (the weights of assessed metrics are needed).

b. Product factors into strategic indicators (the weights of product factors are needed).

The bottom-up approach to perform the quality model assessment is shown in the example of Figure 5.

First, assessed metrics are computed from raw data (e.g., M1: Density of comments of a file, and M2: Total

number of files), and the utility function. Utility functions are customised in the metrics.properties file, and

interpret the raw data value by either the preferences of experts or learned data. After this interpretation,

assessed metrics (e.g., AM1: Commented files) have values from 0 to 1, where 0 is the worst value and 1 is

best value regarding quality.

Second, assessed metrics are aggregated into product factors (considering their weights), and then product

factors are aggregated into strategic indicators.

In the qr-eval module, these two steps of the operationalised quality model assessment is performed by the

eval() method of Eval.java. By default, a cron task is executing this method once per day, but further options

are also available (e.g., manual).

Blocking

Blocking code
Fulfillment of

critical/blocker
quality rules

Critical issues,
blocking issues,…

SonarQube

Issues’
specification

Issues
completely

specified

Filled description
in a issue, Filled

due date,…

JIRA, Redmine,
GitLab

Testing Status Passed tests
Unit tests errors,

Unit tests
passed, …

Jenkins

Test performance Fast tests’ builds Test duration,… Jenkins

Strategic
Indicator

Product
Factor

Assessed
Metric

Raw Data
Data

Source

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 15

Figure 5. Examples with the computation of the assessed metrics: “commented files” and “non-complex files” of code quality
(product quality strategic indicator).

Quality model assessment storage and access

The quality model assessment is stored in the Elastic stack. As we have already seen, a quality model has

several levels of abstraction (see Figure 3 and Figure 4). Each of these levels can be accessed as an index in

the Elastic stack. We defined four types of indexes in the Elastic stack cluster:

1. Strategic indicators: poc.strategic_indicators

2. Product factors and process factors: poc.factors

3. Normalized metrics: poc.metrics

4. Raw data, metrics as collected: sonarqube.measures, sonarqube.issues, jira, svn, jenkins,

gitlab.stats

A demonstration of the functionalities of the qr-eval module is available in Section 4.2.

3. Data Gathering and Analysis Implementation
This section describes the progress made on the relevant user stories from D1.1, and reports the feedback

on technical aspects.

3.1 Progress on User Stories for Data Gathering
Table 3 reports the progress made in the Q-Rapids tool for the proof-of-concept version about data gathering.

The third column reports the progress, which could fit into one of the following categories:

 Open — This user story is in the initial 'Open' state.

 In Progress — This user story is being actively worked on at the moment.

 Resolved — A Resolution has been implemented for the proof-of-concept, and this user story is

awaiting verification by the feedback from the use cases and evaluation. From here, issues are either

'Reopened' or are 'Closed'.

 Reopened — This user story was once 'Resolved' or 'Closed', but is now being re-examined. From

here, issues are either marked In Progress, Resolved or Closed.

 Closed — This user story is complete.

A
 B

o
tto

m
-U

p
 A

p
p

ro
a

c
h

11

U(F2) = 0.4

Product
Quality

Testing StatusCode Quality

AM2: Non-complex
files

AM1: Commented
files

w = 0.33 w = 0.33

Static Sw. Code
Analysis from

SonarQube

U(F1) = 0.5

Value = 0.26

Sw. Stability

M3: Cyclomatic
complexity of a file

M2: Total number
of files

Absence of
duplications

w = 0.33

10.0

1 .0

0 .0

U
ti
li
ty

(
F

2
)

0.0 20.0

v eto

0.4

6.0

Cyclomatic Complexity
1.0

0.0
1.0

U
ti
lit

y
(F

1
)

Comments Density

0.0 3.02.0

0.5 M4: Number of
functions of a file

M1: Density of
comments of a file

w = 0.33 w = 0.33 w = 0.33

Assessed
Metric

Strategic
Indicator

Data Source

Product
Factor

Legend

Raw Data

Shown in the dashboard:

Not shown in the dashboard:

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 16

Table 3. Progress on the user stories for data gathering from D1.1.

Factor User stories Progress Comments
Code Quality
(Maintainability)

As a developer and integrator, I want to gather data
about the quality of the code committed by the
developers, so that we can improve the quality of the
code delivered by the developers.

Resolved

connect-sonarqube
connector of qr-
connect module

As a code guardian, I want to gather data about how
coding guidelines are followed (e.g., complexity and
function size, coverage and duplications, and technical
debt), so that we can manage resources for
maintainability.

Resolved connect-sonarqube
connector of qr-
connect module

As a developer, I want to gather data about the impact
a code change has on complexity, so that we can
identify how rising complexity deteriorates
maintainability.

In
progress

connect-sonarqube
and connect-svn
connectors of qr-
connect module

Testing (Reliability) As a test manager, I want to gather data about the
quality and stability level of regression testing, so that
regression tests cases are not failed or skipped
(ensuring reliability and integratability of the platform)

Resolved connect-jenkins
connector of qr-
connect module

As a quality assessor and integrator, I want to gather
data about the current state of the integration process,
so that we can improve the quality of the code delivered
by the developers.

In
progress

connect-jenkins
connector of qr-
connect module

Time-to-Complete
Issues
(Productivity)

As a product owner/project manager, I want to gather
data about content delivered at Feature Build (FB)
compared to planned content on exit, so that we can
see the planning capability and accuracy of the team.

In
progress

connect-jira and
connect-redmine
connectors of qr-
connect module;
alternative GitLab
connector

Usage (Functional
Suitability)

As a product director, I want to gather data about the
features heavily used by customers, so that it is
completely clear how heavily each feature is used by
customers and why.

Open

As a product owner/UX designer, I want to gather data
about product usage (e.g., total time spent on
functionalities, and most/least used functionalities), so
that we can know if an application is used and to what
extent.

In
progress

We are working on an
extension of qr-
connect for mining
logs to study the usage
of systems.

Bugs and Issues
(Reliability)

As a quality assessor, I want to gather data about the
number of defects discovered during validation and in
operation, so that the proportion of bugs discovered in
validation and in operation is completely clear.

In
progress

connect-jira and
connect-redmine
connectors of qr-
connect module;
alternative GitLab
connector

As a product director, I want to gather data about the
most critical issues in operation, so that it is completely
clear what the most critical issues are (we need stats
over time and over user base).

Open

As a quality manager, I want to gather product reliability
data for KPIs (e.g., MTBF), so that we can maintain
efficient service capability/quality/prioritisation.

In
progress

connect-jira and
connect-redmine
connectors of qr-
connect module

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 17

3.2 Progress on User Stories for Data Analysis
Table 4 reports the progress made in the Q-Rapids tool at the proof-of-concept version about data analysis.

The third column reports the progress as explained in the above subsection.

Table 4. Progress on the user stories for data analysis from D1.1.

Subject User stories Progress Comments
Computation of basic
metrics from possibly
diverse data sources

As a Q-Rapids researcher, I want basic metrics
from the Q-Rapids quality model to be computed
from the data gathered during data ingestion, so
that metrics can be available for data analysis
approaches.

In
progress

qr-eval module. The
assessed metrics of the
proof-of-concept are
resolved, but new
assessed metrics will be
added in the next phases.

Storage of basic
metrics

As a Q-Rapids researcher, I want the computed
basic metrics to be stored in a suitable format
(either relational or NoSQL, e.g., HDFS or HBase),
so that we can later exploit parallelism with Big
Data analysis technologies (e.g., Spark or
Hadoop).

Resolved connect-elatic connector
of qr-connect module and
qr-eval module

Combination of
metrics from
heterogeneous data
sources

As a Q-Rapids researcher, I want to be able to
combine metrics from different data sources, so
that we can reason about product factors with
more than one data source.

In
progress

qr-eval module

Aggregation of basic
metrics into product
factors

As a Q-Rapids researcher, I want the computed
basic metrics to be stored in a way that they can
be easily grouped or aggregated into product
factors (following the Quamoco hierarchy), so
that we can build a quality model from the basic
measures.

Resolved qr-eval module

Aggregation of
product factors into
quality factors

As a Q-Rapids researcher, I want product factors
to be stored in a way that they can be easily
grouped or aggregated into quality factors
(following the Quamoco hierarchy), so that we
can build a quality model from the product
factors.

Open

Utility functions for
proposing candidate
quality requirements

As a Q-Rapids researcher, I want to be able to
define utility functions to model the preferences
of decision makers with respect to the measures
defined for the factors, so that we can analyse
when a basic metric has exceeded a defined
threshold.

In
progress

qr-eval module

Relevant metrics for
product/quality
factors

As a Q-Rapids researcher, I want to be able to
perform analysis approaches to identify relevant
metrics for predicting quality factors, so that we
can rely on the most relevant metrics.

Open

Prediction of future
values of basic
metrics

As a Q-Rapids researcher, I want to be able to
perform analysis approaches to predict the value
of basic metrics in different contexts (i.e., with or
without the consideration of candidate quality
requirements), so that managers can see the
benefits of prioritising a quality requirement in
the product backlog.

Open

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 18

3.3 Evaluation of Technical Aspects
This section respectively reports:

 Feedback on technical aspects of the data gathering and analysis modules.

 Lessons learned and challenges faced during the deployment of the data gathering and analysis

modules at the use cases.

Evaluation of technical aspects
The quality model for the proof-of-concept has been evaluated in the use cases. The details about general

feasibility (in the shape of reliability), appropriateness of the gathered data for analysis purposes, and

appropriateness of the results from the analysis for decision support purposes will be reported in the parallel

deliverable 5.3. As a summary, we report below the scalability and feasibility of the approach:

 Scalability: Kafka and Elastic Stack offer scalability via cluster capabilities. They are popular Big Data

technologies. To check the scalability of storing and accessing the operationalised quality model

assessments in the Elastic stack, we executed a stress testing scenario. We populated Elasticsearch

with 30 million data points containing several characteristics and perform counting based on the

name of those data points. All aggregations and counting tests took less than 1 second for those 30

million data points.

 Feasibility: One of the challenges for the proof-of-concept was the deployment of the Q-Rapids tool

in the four use cases. Such deployment was feasible in all use cases, in which the following

functionalities succeeded: gathering data with the Kafka connectors, storing the data in elastic

search, executing the quality model assessments and storing them in the Elastic stack, and accessing

the data gathering and analysis results from other modules (e.g., the dashboard module).

Challenges faced during the Q-Rapids tool deployment in the use cases
Regarding data gathering and analysis modules, the deployment of the Q-Rapids tool faced several

challenges. It is relevant to report these problems because they might lead to improvement in the Q-Rapids

tool and its architecture. These challenges have been mainly due to the deployment effort (it was suggested

to consider a “container” strategy to support for easier deployment strategies in the companies for next

phases) and the diversity in the use cases in:

 data producers and their versions,

 use of data producers, and,

 environment and network infrastructure.

Diversity of data producers and their versions

For the same activity, use cases have different tools. This has been already reported in D1.1. However, even

when the use cases use the same tools, this does not imply that they use the same version. The connectors

are mainly developed to extract information from the APIs of data producers, whose characteristics change

among versions.

For instance, we have experienced different functionalities/features and constraints among SonarQube

versions in the use cases. The API of SonarQube for v4.x.y only gives the measures for the first 500 resources

(e.g., directory, files), and therefore it does not offer pagination. There is no way to get the metrics from all

resources without a workaround. Form (>=v5.x.y), SonarQube offers pagination. On the other hand, never

versions (>=v6.x.y) have a new constraint: no more than 15 measures can be obtained.

As a consequence, connectors of each tool have been customised to properly work for the different versions

used by the use cases.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 19

Diversity of use among the data producers

When the use cases use the same tool for a purpose, it does not imply that they use it in the same way.

For instance, when they use an issue tracking system as Jira, they may use customised “issue types” instead

of the defaults ones. If we are looking for bugs, and they are not categorised in a de-facto manner, the quality

model assessment module has to be customised to properly aggregate data. This was solved by making a

customised option in which the type use for bugs could be defined.

Another example of different use is Jenkins. Depending on the structure of the builds, the tests results and

duration may be in different places of the JSON documents. Hence, the connectors reading this information

have been customised to properly parser and read customised JSON documents.

Diversity of environment and network infrastructure in the use cases

The environment and network infrastructure also plays an important role for connectors. Connectors should

access external data producers. These external data producers and tools, even if they are the same, are

deployed in different environments and networks with diverse security levels. As an example, SonarQube

may not require authentication credentials, or even require an SSL connection. These problems are very

difficult to solve, since it is needed to test the connectors in real conditions. To solve these issues, the use

cases reported these technical issues via GitLab6.

6 GitLab to report technical problems with the installation of the data gathering and analysis modules:
http://193.142.112.102/root/Proof-of-Concept/issues

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 20

4. Demonstration of Data Gathering and Analysis
This section shows the flow of the data gathering and analysis modules through screenshots.

4.1 Demonstration of Data Gathering User Stories
The data-gathering infrastructure consists of the following elements:

 An Apache Kafka serving as primary ingestion layer and messaging platform.

 A set of so-called Kafka connectors (briefly summarized in Table 2) responsible for the collection of

data from relevant source systems (i.e., SVN/git Version Control, Redmine/Jira issue tracking,

SonarQube source code analysis, Jenkins Continuous Integration).

 An ELK stack (Elasticsearch/Kibana) used for data indexing and analysis purposes.

Start Apache Kafka
Apache Kafka depends on Apache Zookeeper, a tool for distributed configuration management. Zookeeper

has to be started first and is configured by a properties file (zookeeper.properties). For the proof-of-concept,

we used a basic single node setup. The configuration file for zookeeper defines a data directory, the

zookeeper client port and a connection limit (disabled).

Start Zookeeper with the following command:

<Apache-Kafka-Dir>/bin/zookeeper-server-start <zookeeper-properties-file>

Figure 6. Start Zookeper.

Apache Kafka also needs a configuration file (server.properties). With the basic one-node configuration, the

configuration file that comes with Apache Kafka is used without any change. Start Apache Kafka with the

following command:

<Apache-Kafka-Dir>/bin/kafka-server-start <kafka-server-properties-file>

Figure 7. Start Kafka.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 21

SVN Connector
The SVN connector periodically polls information about commits from the SVN version control system. The

execution of the connector is driven by a set a configuration files.

connect-svn.properties defines (among some other settings) the network address of the Kafka server to use,

the location of a connect-offsets file (responsible for storing the last read position which is used when the

connector is restarted) and a REST port for the connector. When multiple connectors are running on the

same machine, the connect-offsets file and REST port has to be different for each running connector.

connect-svn-source.properties defines the connection to the SVN repository. It configures the Kafka Worker

process responsible for fetching data from SVN.

Table 5. Example of configuring the connection of a connector to a data producer: SVN repository.

Attribute Description Example

repository.url The repository base URL https://<svn-server-ip>/repo

repository.path The path is appended to the
repository URL. Concrete values
depend on your repository layout

/<projectname>/trunk

repository.user Authentication Username <Username>

repository.pass Authentication Password <Password>

topic Kafka topic name for storing the svn
data

svn

name Name of the connector kafka-svn-source-connector

connector.class Classname of the class implementing
the connector

connect.svn.SubversionSourceConnector

poll.interval.seconds Polling interval in seconds 60

svn-connect-elasticsearch.properties defines the connection to an Elasticsearch server. It configures a Kafka

Worker process responsible for reading data collected by the SVN source Worker and puts every record read

into an Elasticsearch index.

Table 6. Example of a connection to an Elasticsearch server.

Attribute Description Example

name Name of the connector svn-elasticsearch

connector.class Classname of the class implementing
the connector

io.confluent.connect.elasticsearch.
ElasticsearchSinkConnector

tasks.max Max. number of concurrent tasks 1

topics The Kafka Topic to read, Elasticsearch
index name to store to

svn

name Name of the connector kafka-svn-source-connector

connection.url URL of the Elasticsearch Server http://<elasticsearch-server-ip>:9200

type.name Index type name for Elasticsearch svn

Start the SVN connector with the following command:

CLASSPATH=qr-connect-0.0.2-jar-with-dependencies.jar

<kafka-install-dir>/bin/connect-standalone

<qr-connect-install-dir>/connect-svn.properties

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 22

<qr-connect-install-dir>/connect-svn-source.properties

<qr-connect-install-dir>/connect-svn-elasticsearch.properties

Figure 8. Example of starting a connector: connect-svn.

After a successful run of the connector, the data collected is available in the Elastic stack. We can visualize

the data in the Elastic stack through Kibana. In Figure 9, we can see the selected index (svn), the hits got

during the selected period (403 hits), and chart with the frequency of data points, and a list with the attributes

of each data point.

Figure 9. Commit data gathered by the connect-svn connector and stored in the svn elastic search index.

The data collected by the SVN connector has the following attributes: revision, message, author, date,

filename, nodekind, action. Descriptions and examples of these attributes are available in Table 12 of Annex

B.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 23

Jenkins Connector
The Jenkins connector is configured by a similar set of configuration files (connect-jenkins.properties,

connect-jenkins-source.properties, connect-jenkins-elasticsearch.properties) as the aforementioned SVN

connector with similar content, we leave out the details for brevity. Details are available in Annex B.

After a successful run of the Jenkins connector, the data is available in Elasticsearch/Kibana:

Figure 10. Test data gathered by the connect-jenkins connector and stored in the jenkins elastic search index.

The data collected by the Jenkins connector has the following attributes: created, jenkinsUrl, jobName,

jobUrl, jobClazz, displayName, lastBuild, lastCompletedBuild, lastFailedBuild, lastStableBuild,

lastSuccessfullBuild, lastUnstableBuild, lastUnsuccessfullBuild, buildNumber, buildUrl, buildDescription,

duration, estimatedDuration, result, timestamp, testsFail, testsPass, testsSkip, testDuration. Descriptions

and examples of these attributes are available in Table 13 of Annex B.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 24

Sonarqube Connector
The sonarqube connector collects two different datasets from sonarqube: measures obtained via static code

analysis and issues (i.e., quality rules violations). The measures consists of typical size and complexity metrics

like lines-of-code, cyclomatic complexity, comment-density and so on. The issue data (i.e., quality rule

violations, which are different from the issues of issue tracking systems) identifies pieces of code that break

configured coding rules along with the severity of the rule violation (i.e. BLOCKER, CRITICAL, MAYOR, MINOR,

INFO).

After a successful run of the connector, the two datasets are available in Elasticsearch/Kibana:

Figure 11. Issues (i.e., quality rules violations) data gathered by the connect-sonarqube connector and stored in the
sonarqube.issues elastic search index.

The format of the metrics data collected contains the following attributes: sonarUrl, snapshotDate, bcId,

bcKey, bcName, bcQualifier, Id, key, name, qualifier, language, metric, value, floatValue. The attribute metric

consist of the name of the metric, such as cyclomatic complexity, comments ratio, and duplications ratio.

Descriptions and examples of these attributes are available in Table 16 of Annex B.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 25

Figure 12. Static code analysis measures data gathered by the connect-sonarqube connector and stored in the sonarqube.measures
elastic search index.

The format of the issues data collected contains the following attributes: sonarUrl, snapshotDate, rule,

severity, component, componentId, project, line, startLine, startOffset, endLine, endOffset, effort, debt,

author, creationDate. Descriptions and examples of these attributes are available in Table 15 of Annex B.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 26

Jira Connector
The connector collects data from a Jira issue tracking system. After a successful run of the Jenkins connector,

the data is available in Elasticsearch/Kibana:

Figure 13. Issues (i.e., tasks) data gathered by the connect-jira connector and stored in the jira elastic search index.

The data format is as follows: jiraUrl, projectKey, projectName, jiraIssueApi, issuetype, timespent,

description, aggregatetimespent, resolution, aggregatetimeestimate, resolutiondate, summary, lastViewed,

creator, created, reporter, priority, timeestimate, duedate, assignee, updated, status. Descriptions and

examples of these attributes are available in Table 14 of Annex B.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 27

Redmine Connector
In case they are using other issue tracking connector than Jira, the qr-connect module has other connectors.

This connector collects data from a Redmine issue tracking system. After a successful run of the Redmine

connector, the data is available in Elasticsearch/Kibana:

Figure 14. Issues (i.e., tasks) data gathered by the connect-redmine connector and stored in the redmine elastic search index.

The data format is as follows: redmineURL, project_id, project, issue_id, tracker, tracker_id, status, status_id,

priority, priority_id, author, author_id, assigned_to, assigned_to_id, fixed_version, fixed_version_id, subject,

start_date, done_ratio, created_on, updated_on. Descriptions and examples of these attributes are available

in Table 17 of Annex B.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 28

GitLab connector
For the GitLab connector, in the ITTI use case, the data is fed on a daily basis to the Elasticsearch platform.

The data are stored under the ‘gitlab.stats.<project name>’ index. The schema of the index is shown below

(Figure 15):

Figure 15. The schema of gitlab.stats.<project name> index

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 29

4.2 Demonstration of Data Analysis User Stories
After the collection of raw data from diverse data producers (i.e., an issue tacking system, static source code

analysis, continuous build systems, and version control), the qr-eval command-line tool computes assessed

metrics, product factors, and strategic indicators from the raw data as explained in Figure 5. The qr-eval reads

the indexes as it set up in the index.properties file (see Annex B). Then, the assessed metrics, product factors,

and strategic indicators are computed by qr-eval and stored three Elasticsearch indices (poc.metrics,

poc.factors, poc.strategic_indicators). From there, the strategic dashboard reads the data to display several

analysis views to the user.

Assessed Metrics
The quality model is contained in a set of configuration files (metrics.properties, factors.properties, and

indicator.properties). In a first step, a fixed set of metrics is computed from the raw data collected by the qr-

connect module. All metrics are normalized to the interval [0..1], where 1 stands for a good and desirable

value and 0 for the opposite. The properties of the collected metrics are defined within the metrics.properties

file. In this file, metrics computation can be turned on and off (depending on the available raw data) and

other properties like metric thresholds are defined. For instance, for the “ratio of open/in progress bugs”, it

should be specified if this is calculated from data in Jira or Redmine.

Table 7. An excerpt of the metrics.properties file. An example for “non-complex files” and “commented files”.

computed from sonarqube measures index

complexity.enabled=true

complexity.name=Complexity

complexity.description=Percentage of files that do not exceed a defined

average complexity per function

complexity.factors=codequality

complexity.threshold.upper=15

complexity.threshold.lower=1

complexity.source=function_complexity

computed from sonarqube measures index

comments.enabled=true

comments.name=Comment Ratio

comments.description=Percentage of files lying within a defined range of

comment density

comments.factors=codequality

comments.threshold.upper=30

comments.threshold.lower=10

comments.source=comment_lines_density

The computed metrics are stored in the poc.metrics index. For instance, Figure 16 is showing the index with

a filter: only the “Complexity” assessed metric is shown.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 30

Figure 16. The assessed metrics from quality model assessments: the poc.metrics elastic search index.

Product Factors
In a second step, qr-eval computes the factors defined within the factors.properties file.

Table 8. The factors.properties file, containing the product factors.

codequality.enabled=true

codequality.name=Code Quality

codequality.description=It measures the impact of code changes in source code

quality. Specifically, it is an aggregation of the metrics after static code

analysis in the specified evaluation date.

codequality.strategic_indicators=productquality

blockingcode.enabled=true

blockingcode.name=Blocking Code

blockingcode.description=Technical debt in software code in terms of rule

violations

blockingcode.strategic_indicators=blocking

qualityissuespecification.enabled=true

qualityissuespecification.name=Quality Issue Specification

qualityissuespecification.description=Completeness of Issue Specification

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 31

qualityissuespecification.strategic_indicators=blocking

softwarestability.enabled=true

softwarestability.name=Software stability

softwarestability.description=Completeness of Issue Specification

softwarestability.strategic_indicators=productquality

testingstatus.enabled=true

testingstatus.name=Testing Status

testingstatus.description=Quality and stability of executed tests

testingstatus.strategic_indicators=blocking,product quality

For each product factor, qr-eval computes an average of all metrics influencing the factor stores the result

in the Elasticsearch index poc.factors:

Figure 17. The product factors from quality model assessments: the poc.factors elastic search index.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 32

Strategic Indicators
After the product factors computation, qr-eval computes the strategic indicators defined in the

indicators.properties file:

Table 9. An excerpt of the indicator.properties file, containing the strategic indicators.

productquality.enabled=true

productquality.name=Product Quality

productquality.description= It refers to how a product meets code quality,
testing status, and software stability.

blocking.enabled=true

blocking.name=Blocking

blocking.description= It informs that some condition has been detected
influencing negatively in the progress of the regular workflow.

As with the factor computation, the value of an indicator computes as the average of all factor values

influencing the indicator. The resulting indicators are stored in the poc.strategic_indicators index:

Figure 18. The strategic indicators from quality model assessments: the poc.strategic indicators elastic search index.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 33

Performing the quality model assessment
The qr-eval command-line tool reports the results of the quality model execution in the console or log-file

shown in Figure 19.

Figure 19. Example of an execution of a quality model assessment for the day 19.01.2018.

Currently, the aggregation is done daily, based on the data for that day. The unique id of any of the assessed

metrics/product factors/strategic indicators stored is located in the default Elasticsearch id: "_id". The id

consist of the name of the element (e.g., productquality), and the date (e.g., 2018-01-19). Several examples

are shown in:

 Figure 16 for assessed metric: complexity-2018-01-19.

 Figure 17 for product factor: codequality-2018-01-19.

 Figure 18 for strategic indicator: productquality-2018-01-19.

Elasticsearch API: Access
In the same way that the qr-connect connectors access the data producers, other modules (e.g., the strategic
dashboard) can access the aforementioned indexes containing the quality model assessment in three ways:

1. JSON API by following the Kibana or Elasticsearch URLs (see Figure 20):
- For instance: Elasticsearch Search API: http://”ELK_URL”:9200/<index-

name>/_search?q=<query>&pretty
2. Embed the connection to the API in Java.
3. Using the dev tools of Kibana:

https://www.elastic.co/guide/en/elasticsearch/reference/current/search.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/search.html

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 34

Figure 20. Accessing the quality model assessment via Elasticsearch Search API.

Relations between indexes:

 Strategic indicators and product factors: To get all factors relevant for a strategic indicator, take the value

of the attribute "strategic_indicator" (e.g. "productquality") and query all factors that have the value

"productquality" in the array "strategic_indicators" and restrict to the evaluationDate. Example:

http://ELASTIC_URL:9200/poc.metrics/_search?q=factors:codequality+AND+evaluationDate:2017-11-

14

 Product factors and assessed metrics: To get all metrics relevant for a factor, take the value of the

attribute "factor" (e.g. "codequality") and query all metrics that have the value "codequality" in the array

"factors" and restrict to the evaluationDate. Example:

http://ELASTIC_URL:9200/poc.metrics/_search?q=factors:codequality+AND+evaluationDate:2017-11-

14

http://elastic_url:9200/poc.metrics/_search?q=factors:codequality+AND+evaluationDate:2017-11-14
http://elastic_url:9200/poc.metrics/_search?q=factors:codequality+AND+evaluationDate:2017-11-14
http://elastic_url:9200/poc.metrics/_search?q=factors:codequality+AND+evaluationDate:2017-11-14
http://elastic_url:9200/poc.metrics/_search?q=factors:codequality+AND+evaluationDate:2017-11-14

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 35

5. Data Gathering and Analysis Software and Installation
This section contains the links to download the delivered software and briefly reports the development and

communication around the Q-Rapids GitLab.

5.1 Q-Rapids Data Gathering and Analysis Modules: Download
The qr-connect and qr-eval modules have the following prerequisites:

 Java SE: The data gathering and analysis tools (qr-connect, qr-eval) are based on Java. An actual

version of the Java SE (version >= 1.8) is required.

 Apache Kafka: The raw data collected from the source systems is stored in Apache Kafka. For the

proof-of-concept, the confluent OSS version 3.2.1 is required.

 Elasticsearch: For data analysis (assessed metrics, product factors, and strategic indicators

computation), an actual version of the Elastic stack (version >= 5.4) is required.

 Kibana (optional): Kibana is used to view data stored in Elasticsearch and to build basic dashboards.

The installation is recommended.

The qr-connect and qr-eval modules for the proof-of-concept are provided as a zip archive files in public links

in the Q-Rapids basecamp:

 qr-connect:

https://public.3.basecamp.com/p/fXhyhinHW23apFM7xyEbtNsQ

 qr-eval:

https://public.3.basecamp.com/p/EBYGXZEqBExrVoCm6XnjDhnd

 source code: https://public.3.basecamp.com/p/441DaJqkY6YfXoDRjUEqtzUR

See Annex B for complete and detailed documentation for installation and use of the qr-connect and qr-eval

modules.

5.2 Development, Communication and Support among Q-Rapids Partners
During the proof-of-concept, we have kept updated the source code in our GitLab repository7. The source

code is available to all vested stakeholders in the Q-Rapids project (i.e., Q-Rapids developers from several

partners). In GitLab, different tags with the modules’ versions together with release notes are available.

Besides, we used the e-mail list q-rapids-pilots-technical@essi.upc.edu to communicate the releases of qr-

connect and qr-eval together with release notes. In this e-mail list, there are responsible people for the

deployment of the Q-Rapids tool in all partners.

Regarding support, use cases’ technicians have reported technical problems with the installation and

deployment of the data gathering and analysis by creating issues in our GitLab repository. We have dealt with

these issues and run technical telco meetings with every industrial partner to support the Q-Rapids tool

deployment before the proof-of-concept evaluation.

7 Q-Rapids GitLab repository: http://193.142.112.102/users/sign_in
Issues communication: http://193.142.112.102/root/Proof-of-Concept/issues

https://public.3.basecamp.com/p/fXhyhinHW23apFM7xyEbtNsQ
https://public.3.basecamp.com/p/EBYGXZEqBExrVoCm6XnjDhnd
https://public.3.basecamp.com/p/441DaJqkY6YfXoDRjUEqtzUR
mailto:q-rapids-pilots-technical@essi.upc.edu
http://193.142.112.102/root/Proof-of-Concept/issues

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 36

Conclusion
This document reports a demonstration on the modules of the Q-Rapids tool for data gathering and analysis.

The main functionalities resolved at the proof-of-concept are:

 Connectors (from the qr-connect module of the Q-Rapids tool) to gather data from:

o Static code analysis measures: SonarQube.

o Quality rules: SonarQube.

o Tests: Jenkins, GitLab.

o Issues: Redmine, Jira, GitLab.

o Commits: SVN.

 Automatic execution of the quality model assessment (the qr-eval module of the Q-Rapids tool) for:

o Product quality (based on code quality, testing status, and software stability).

o Blocking (based on blocking code, issues’ specification, testing status, testing performance).

Next steps include the implementation of connectors to gather data at runtime, generation of quality

requirements, the implementation of process factors, and the correlation of multiple data sources for data

analysis.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 37

Annex A – Quality Model for the Proof-of-Concept
This annex provides a short explanation of the quality model implemented in the proof-of-concept: Product Quality and Blocking strategic indicators.

Note: all the thresholds below can be easily customized in each company.

Blocking
It refers to conditions that negatively affects the progress of your project workflow. Blocking situations are e.g. stop-the-line, postpone a feature, … .

Product factors:

 Blocking code: It measures the technical debt of software code, in terms of quality rule violations.

 Quality Issues’ specification: It measures the state in which final information of a feature is included in the backlog, and hence it is ready to be
developed.

 Testing Status: It measures the quality and stability level of executed tests during development.

 Test performance: It measures the time consumed for the execution of tests.

Table 10. Quality model for the proof-of-concept: blocking strategic indicator.

Product Factor Assessed Metric Description Calculation Data source

Blocking code
Fulfilment of
critical/blocker
quality rules

Files fulfilling the
critical or blocker
quality rules
violations threshold

Fulfillment of critical/blocker quality rules
 𝑖𝑙𝑒𝑠 𝑤𝑖𝑡ℎ 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑜𝑟 𝑏𝑙𝑜𝑐𝑘𝑒𝑟 𝑖𝑠𝑠𝑢𝑒𝑠

 Total number of files

SonarQube

Quality Issues’
specification

Issues completely
specified

Density of
incomplete issues in
a timeframe

Issues completely specified
Issues completely specified

Issues

where an issue is completely specified if the fields {<description>, <due date>} are not empty

JIRA, Redmine,
GitLab

Testing Status Passed tests
Unit test success
density

Passed tests
 𝑛𝑖𝑡 𝑡𝑒𝑠𝑡𝑠 − 𝑛𝑖𝑡 𝑡𝑒𝑠𝑡 𝑒𝑟𝑟𝑜𝑟𝑠 + 𝑛𝑖𝑡 𝑡𝑒𝑠𝑡 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

Unit tests

Jenkins

Test
performance

Fast tests’ builds
Tests’ builds under
the threshold of
duration

Density of fast tests’ builds
Fast unit test

Unit tests

where an unit test is fast if its duration is lower than <5 minutes>

Jenkins

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 38

Product Quality
It refers here to the maintainability, reliability, and functional suitability of your software product.

Product factors:

 Code Quality: It measures the impact of code changes in source code quality.

 Testing Status: It measures the quality and stability level of executed tests during development.

 Software stability: It measures the most critical issues.

Table 11. Quality model for the proof-of-concept: product quality strategic indicator.

Product Factor Assessed
Metric

Description Calculation Data source

Code Quality

Non-complex
files

Files under the threshold of
complexity

Density of non − complex files
Non − Complex files

Total number of files

where a file is complex if the <cyclomatic complexity> per <function> is greater than <15>.

SonarQube

Commented
files

Files exceeding the
comments percentage
threshold

Density of commented files
Commented files

Total number of files

where a file is commented if the < density of comment lines> is between 10% and 30%

Density of comment lines
Comment lines

 Lines of code + Comment lines

SonarQube

Absence of
duplications

Files under the duplicated
lines percentage threshold

Absence of duplications
Files without duplications

Total number of files

where a file has no duplications if the < density of duplication> is less than 5%

Density of duplication
𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 𝑙𝑖𝑛𝑒𝑠

Lines

SonarQube

Testing Status Passed tests Unit test success density Passed tests
 𝑛𝑖𝑡 𝑡𝑒𝑠𝑡𝑠 − 𝑛𝑖𝑡 𝑡𝑒𝑠𝑡 𝑒𝑟𝑟𝑜𝑟𝑠 + 𝑛𝑖𝑡 𝑡𝑒𝑠𝑡 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

Unit tests

Jenkins,
GitLab

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 39

Software
Stability

Ratio of
open/in
progress bugs

Ratio of open issues of type
bug with respect to the total
number of issues in a
customized time frame (e.g.,
current/last month or
current/last sprint)

Ratio of bugs
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑛 𝑖𝑠𝑠𝑢𝑒𝑠/𝑖𝑛 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠/𝑟𝑒 − 𝑜𝑝𝑒𝑛𝑒𝑑 𝑜𝑓 𝑡𝑦𝑝𝑒 "𝑏𝑢𝑔"

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑛 𝑖𝑠𝑠𝑢𝑒𝑠/𝑖𝑛 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠/𝑟𝑒 − 𝑜𝑝𝑒𝑛𝑒𝑑
∗ 00

JIRA,
Redmine,
GitLab

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 40

Annex B – Data Gathering and Analysis Modules Installation and Use (Axel)
This annex includes:

1. How to deploy the Q-Rapids Source Data Connectors: the qr-connect module.

2. How to define the quality model indexes in the Elastic stack.

3. How to customise the quality model and perform the quality model assessment: the qr-eval-

module.

How to deploy the Q-Rapids Source Data Connectors: the qr-connect module

Prerequisites
The Q-Rapids source data connectors consist of a set of Apache Kafka connectors8 that allows for storing

data from various sources (Jenkins, Jira, sonarqube, and svn) into an Apache Kafka Server and from there

into an Elasticsearch server. The connectors are based on the Confluent Kafka Connect Framework and are

developed in Java. An already available Kafka connector for Elasticsearch9 allows transferring the data into

an Elasticsearch Cluster to allow for searching and querying the collected data. The prerequisites to deploy

qr-connect are:

 A Linux Server with Oracle Java SE 8 installed

 Elasticsearch and Kibana installed (tested with version 5.4). The setup instructions for Elasticsearch

are located at https://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html

while the instructions for Kibana are located at

https://www.elastic.co/guide/en/kibana/current/setup.html.

 Confluent Open Source Kafka framework (tested with version 3.2.1). The installation instructions

for the Confluent Platform are found at

https://docs.confluent.io/current/installation/index.html

QR-Connect Framework
The qr-connect framework consists of an executable jar file containing the Apache Kafka Connectors, a set

of configuration files that configure the options for the data collection (e.g. ip-addresses of the source

systems), and a set of schema files for Elasticsearch that define the datatypes of the target indices.

Before running any connector, make sure that

 The Elasticsearch server is up and running. Check with a browser that the address
<your-elasticsearch-server-ip>:9200 shows something like
{

 "name" : "Mu_73pu",

 "cluster_name" : "elasticsearch",

 "cluster_uuid" : "GbvewoODSAKub4595F0WHg",

 "version" : {

 "number" : "5.4.0",

 "build_hash" : "780f8c4",

 "build_date" : "2017-04-28T17:43:27.229Z",

 "build_snapshot" : false,

 "lucene_version" : "6.5.0"

 },

8 https://www.confluent.io/product/connectors/
9 https://www.elastic.co/de/products/elasticsearch

https://www.elastic.co/guide/en/elasticsearch/reference/current/setup.html
https://www.elastic.co/guide/en/kibana/current/setup.html
https://docs.confluent.io/current/installation/index.html

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 41

 "tagline" : "You Know, for Search"

}

 The Kibana Server is up and running Check with a browser that the Kibana GUI is displayed at
<your-elasticsearch-server-ip>:5601

 The Kafka Server is up and running. You have to start zookeeper first:
<Apache-Kafka-Dir>/bin/zookeeper-server-start <zookeeper-

properties-file>
<Apache-Kafka-Dir>/bin/kafka-server-start <kafka-server-properties-

file>

SVN Source Connector
The svn connector periodically polls a svn repository for new commits.

The connector collects data about commits in the following format:

Table 12. Data gathered about commits with the svn connector: attributes, descriptions, and examples.

Attribute Description Example

revision The svn revision 70

message The commit message of the revision Issue XXXX: Description

author The author of the revision (svn username) <svn username>

date UTC date 2015-12-02T17:39Z

filename A name of a file or directory that is added,
removed, or changed with the commit

/<projectname>/trunk/…/Some.java

nodekind Kind of element “file” or “dir”

action Repository action “A” – added
“D” – deleted
“M” – modified

The index mapping for the svn Elasticsearch index (elasticsearch.svn.schema) has to be put into

Elasticsearch before the connector is run (e.g. by using Kibana Dev Tools):

PUT svn

{

 "mappings": {

 "svn": {

 "properties": {

 "action": { "type": "keyword" },

 "author": { "type": "keyword" },

 "date": { "type": "date" },

 "filename": { "type": "keyword" },

 "message": { "type": "text" },

 "nodekind": { "type": "keyword" },

 "revision": { "type": "long"}

 }

 }

 }

}

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 42

The svn source connector configuration is stored in a properties file (connect-svn-source.properties):

Attribute Description Example

repository.url The repository base URL https://<svn-server-ip>/repo

repository.path The path is appended to the
repository URL. Concrete values
depend on your repository layout

/<projectname>/trunk

repository.user Authentication Username <Username>

repository.pass Authentication Password <Password>

topic Kafka topic name for storing the svn
data

svn

name Name of the connector kafka-svn-source-connector

connector.class Classname of the class implementing
the connector

connect.svn.SubversionSourceConnector

poll.interval.seconds Polling interval in seconds 60

An additional configuration file is used to define the Elasticsearch server as a data sink (connect-svn-

elasticsearch.properties). Every item stored in the Kafka server is also passed to Elasticsearch.

Attribute Description Example

name Name of the connector svn-elasticsearch

connector.class Classname of the class implementing
the connector

io.confluent.connect.elasticsearch.
ElasticsearchSinkConnector

tasks.max Max. number of concurrent tasks 1

topics The Kafka Topic to read, Elasticsearch
index name to store to

svn

name Name of the connector kafka-svn-source-connector

connection.url URL of the Elasticsearch Server http://<elasticsearch-server-ip>:9200

type.name Index type name for Elasticsearch svn

One more configuration file defines the basic connector configuration (connect-svn.properties):

Attribute Description Example

bootstrap.servers Kafka Server URL <kafka-bootstrap-server-ip>:9092

offset.storage.file.filename Kafka offset storage, resume
reading source data at the
correct position

/tmp/connect-svn.offsets

rest.port Rest port of the connector. If
multiple connectors are run,
this port has to be different
for every instance

8085

… Standard attributes not shown …

Before running the connector, at least adapt the following configuration values:

 connect-svn.properties:

o bootstrap.servers (set to your kafka server ip)

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 43

 connect-svn-source.properties:

o repository.url (set to your svn server base url)

o repository.path (set to a path within your repository, e.g. “/project/trunk”)

o repository.user (valid svn username)

o repository.pass (valid password)

To run the connector for svn, use the following command within the qr-connect directory (put into one

line):

CLASSPATH=qr-connect-0.0.2-jar-with-dependencies.jar

<kafka-install-dir>/bin/connect-standalone

<qr-connect-install-dir>/connect-svn.properties

<qr-connect-install-dir>/connect-svn-source.properties

<qr-connect-install-dir>/connect-svn-elasticsearch.properties

Jenkins Source Connector
The Jenkins connector periodically polls a Jenkins server for new builds of a defined list of jobs. The

connector collects data about builds in the following format:

Table 13. Data gathered about builds of projects with the Jenkins connector: attributes, descriptions, and examples.

Attribute Description Example

created Timestamp of data collection
UTC

2017-10-12T09:38Z

jenkinsUrl URL of the Jenkins server http://<ip-address>:8080/

jobName Job name job1

jobUrl URL of the job http://<ip-address>:8080/job/job1/

jobClazz Jenkins job class hudson.model.FreeStyleProject

displayName Jenkins job display name job1

lastBuild Last build number 39

lastCompletedBuild Last complete build number 31

lastFailedBuild Last failed build number 31

lastStableBuild Last stable build number 39

lastSuccessfullBuild Last successful build number 39

lastUnstableBuild Last unstable build number -1

lastUnsuccessfullBuild Last unsuccessful build
number

31

buildNumber Job build number 39

buildUrl URL of the build http://<ip-address>:8080/job/job1/39/

buildDescription Build description null

duration Build duration 13947

estimatedDuration Estimated build duration 11983

result build result SUCCESS

timestamp Timestamp of build 2017-10-10T09:15Z

testsFail Number of failed tests (e.g.
provided by JUnit test run)

0

testsPass Number of passed tests (e.g.
provided by JUnit test run)

3

testsSkip Number of skipped tests (e.g.
provided by JUnit test run)

0

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 44

testDuration Test Duration 0.002

The index mapping for the jenkins Elasticsearch index (elasticsearch.jenkins.schema) has to be put into

Elasticsearch before the connector is run (e.g. by using Kibana Dev Tools):

PUT jenkins

{

 "mappings": {

 "jenkins": {

 "properties": {

 "buildClazz": { "type": "keyword" },

 "buildDescription": { "type": "text" },

 "buildNumber": { "type": "integer" },

 "buildUrl": { "type": "keyword" },

 "created": { "type": "date" },

 "displayName": { "type": "keyword" },

 "duration": { "type": "long" },

 "estimatedDuration": { "type": "long" },

 "jenkinsUrl": { "type": "keyword" },

 "jobClazz": { "type": "keyword" },

 "jobName": { "type": "keyword" },

 "jobUrl": { "type": "keyword" },

 "lastBuild": { "type": "integer" },

 "lastCompletedBuild": { "type": "integer" },

 "lastFailedBuild": { "type": "integer" },

 "lastStableBuild": { "type": "integer" },

 "lastSuccessfullBuild": { "type": "integer" },

 "lastUnstableBuild": { "type": "integer" },

 "lastUnsuccessfullBuild": { "type": "integer" },

 "result": { "type": "keyword" },

 "testDuration": { "type": "double" },

 "testsFail": { "type": "long" },

 "testsPass": { "type": "long" },

 "testsSkip": { "type": "long" },

 "timestamp": { "type": "date" }

 }

 }

 }

}

The Jenkins source connector configuration is stored in a properties file (connect-jenkins-

source.properties):

Attribute Description Example

name Name of the connector kafka-jenkins-source-connector

connector.class Classname of the class
implementing the connector

connect.jenkins.JenkinsSourceConnector

jenkins.url URL of the Jenkins server http://<jenkins-server-ip>:8080/

jenkins.user Authentication Username <Username>

jenkins.pass Authentication Password <Password>

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 45

jenkins.topic Kafka topic name jenkins

jenkins.jobs List of job names to be analyzed job1, job2

jenkins.lookback When started the first time, fetch
only this number of recent builds

100

jenkins.interval.seconds Poll interval in seconds 60

use.preemptive.auth Activates Nokia version with
special authentication if set to
true, default false.

false

An additional configuration file is used to define the Elasticsearch server as a data sink (connect-jenkins-

elasticsearch.properties). Every Jenkins item stored in the Kafka server is also passed to Elasticsearch.

Attribute Description Example

name Name of the connector kafka-jenkins-elasticsearch

connector.class Classname of the class implementing
the connector

io.confluent.connect.elasticsearch.
ElasticsearchSinkConnector

tasks.max Max. number of concurrent tasks 1

topics The Kafka Topic to read, Elasticsearch
index name to store to

jenkins

connection.url URL of the Elasticsearch Server http://<elasticsearch-server-ip>:9200

type.name Index type name for Elasticsearch jenkins

One more configuration file defines the basic connector configuration (connect-jenkins.properties):

Attribute Description Example

bootstrap.servers Kafka Server URL <kafka-bootstrap-server-ip>:9092

offset.storage.file.filename Kafka offset storage, resume
reading source data at the
correct position

/tmp/connect-jenkins.offsets

rest.port Rest port of the connector. If
multiple connectors are run,
this port has to be different for
every instance

8086

… Standard attributes not shown …

Before running the connector, at least adapt the following configuration values:

 connect-jenkins.properties:

o bootstrap.servers (set to your kafka server ip)

 connect-jenkins-source.properties:

o jenkins.url (set to your jenins server url)

o jenkins.user (valid jenkins username)

o jenkins.pass (valid password)

o jenkins.jobs (list of jobs to observe)

To run the connector for svn, use the following command within the qr-connect directory (put into one

line):

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 46

CLASSPATH=qr-connect-0.0.2-jar-with-dependencies.jar

<kafka-install-dir>/bin/connect-standalone

<qr-connect-install-dir>/connect-jenkins.properties

<qr-connect-install-dir>/connect-jenkins-source.properties

<qr-connect-install-dir>/connect-jenkins-elasticsearch.properties

Jira Source Connector
The Jira connector periodically polls a Jira server for issues of a defined project. The connector collects data

about issues in the following format:

Table 14. Data gathered about issues with the Jira connector: attributes, descriptions, and examples.

Attribute Description Example

jiraUrl URL of the Jira server http://<jira-ip>:<jira-port>

projectKey The project key QRAP

projectName The project name Q-Rapids-Project

jiraIssueApi API URL for the issue http://<jira-ip>:<jira-port>/
rest/api/2/issue/10102

issuetype Issue type Bug

timespent Time spent on issue null

description Description of the issue Repair this stuff.

aggregatetimespent Time spent on issue including
child issues

null

resolution Issue resolution null

aggregatetimeestimate Aggregate time estimate null

resolutiondate Date no resolution null

summary Issue summary Always something wrong!

lastViewed Timestamp 2017-09-13T10:40:36.572+0200

creator User who created the issue admin

created Timestamp 2017-09-13T10:40:36.000+0200

reporter User who reported the issue admin

priority Issue priority Medium

timeestimate Time estimate null

duedate Due date null

assignee Assigned to … null

updated Timestamp 2017-09-13T10:40:36.000+0200

status Issue status

The index mapping for the Jira Elasticsearch index (elasticsearch.jira.schema) has to be put into

Elasticsearch before the connector is run (e.g. by using Kibana Dev Tools):

PUT jira

{

 "mappings": {

 "jira": {

 "properties": {

 "aggregatetimeestimate": { "type": "long" },

 "aggregatetimespent": { "type": "long" },

 "assignee": { "type": "keyword" },

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 47

 "created": { "type": "date" },

 "creator": { "type": "keyword" },

 "description": { "type": "text" },

 "duedate": { "type": "date" },

 "issuetype": { "type": "keyword" },

 "issueid": { "type": "keyword" },

 "issuekey": { "type": "keyword" },

 "jiraIssueApi": { "type": "keyword" },

 "jiraUrl": { "type": "keyword" },

 "lastViewed": { "type": "date" },

 "priority": { "type": "keyword" },

 "projectKey": { "type": "keyword" },

 "projectName": { "type": "keyword" },

 "reporter": { "type": "keyword" },

 "resolution": { "type": "keyword" },

 "resolutiondate": { "type": "date" },

 "status": { "type": "keyword" },

 "summary": { "type": "text" },

 "timeestimate": { "type": "long" },

 "timespent": { "type": "long" },

 "updated": { "type": "date" }

 }

 }

 }

}

The Jira source connector configuration is stored in a properties file (connect-jira-source.properties):

Attribute Description Example

name Name of the connector kafka-jira-source-connector

connector.class Classname of the class implementing
the connector

connect.jira.JiraSourceConnector

jira.url URL of the Jira server http://<jira-server-ip>:<port>/

jira.user Authentication Username <Username>

jira.pass Authentication Password <Password>

jira.topic Kafka topic name jira

jira.project The Jira project to be analyzed q-rapids

jira.interval.seconds Poll interval in seconds 60

jira.created.since Fetch issues created since this date 2017-01-01

An additional configuration file is used to define the Elasticsearch server as a data sink (connect-jira-

elasticsearch.properties). Every Jenkins item stored in the Kafka server is also passed to Elasticsearch.

Attribute Description Example

name Name of the connector kafka-jira-elasticsearch

connector.class Classname of the class implementing the
connector

io.confluent.connect.elasticsearch.
ElasticsearchSinkConnector

tasks.max Max. number of concurrent tasks 1

topics The Kafka Topic to read, Elasticsearch
index name to store to

jira

connection.url URL of the Elasticsearch Server http://<elasticsearch-server-ip>:9200

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 48

type.name Index type name for Elasticsearch jira

One more configuration file defines the basic connector configuration (connect-jira.properties):

Attribute Description Example

bootstrap.servers Kafka Server URL <kafka-bootstrap-server-ip>:9092

offset.storage.file.filename Kafka offset storage, resume reading
source data at the correct position

/tmp/connect-jira.offsets

rest.port Rest port of the connector. If
multiple connectors are run, this
port has to be different for every
instance

8087

… Standard attributes not shown …

Before running the connector, at least adapt the following configuration values:

 connect-jira.properties:

o bootstrap.servers (set to your kafka server ip)

 connect-jira-source.properties:

o jira.url (set to your jenins server url)

o jira.user (valid jenkins username)

o jira.pass (valid password)

o jira.project (projects to collect issues from)

To run the connector for jira, use the following command within the qr-connect directory (put into one

line):

CLASSPATH=qr-connect-0.0.2-jar-with-dependencies.jar

<confluent-kafka-install-dir>/bin/connect-standalone

<qr-connect-install-dir>/connect-jira.properties

<qr-connect-install-dir>/connect-jira-source.properties

<qr-connect-install-dir>/connect-jira-elasticsearch.properties

Sonarqube Source Connector
The Sonarqube connector periodically polls a Sonarqube server for measures and code issues and produces

two types of records:

Measures:

Table 15. Data gathered about measures with the SonarQube connector: attributes, descriptions, and examples.

Attribute Description Example

sonarUrl URL of the Sonarqube server http://<ip-address>:<port>

snapshotDate Date record was produced (read into kafka). 2017-09-15T11:30Z

bcId baseComponentdId in Sonarqube AV5_x36Jt2orMGobWbjx

bcKey baseComponentKey in Sonarqube. This
equals the “sonar.projectKey” specified in
the sonar-project.properties file

tomcat:9.x

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 49

bcName Project name in Sonarqube. This equals the
“sonar.ProjectName” specified in the sonar-
project.properties file

Tomcat

bcQualifier One of:

 VW: view
 SVW: sub-view
 TRK: project
 BRC: module
 CLA: class
 UTS: unit test
 DIR: directory
 FIL: file
 DEV: developer

TRK

Id Internal Sonarqube id AV5_x4oatOvqTRshLU_S

key Component key tomcat:9.x:javax/servlet/
jsp/tagext/TagInfo.java

name Component name TagInfo.java

qualifier Component Qualifier. One of
VW: view

 SVW: sub-view
 TRK: project
 BRC: module
 CLA: class
 UTS: unit test
 DIR: directory
 FIL: file

DEV: developer

FIL

language Programming language java

metric Metric name functions

value Textual value Representation “7”

floatValue Float value represenatatin (if applicable) 7.0

The index mapping for the Sonarqube Measures Elasticsearch index

(elasticsearch.sonarqube.measure.schema) has to be put into Elasticsearch before the connector is run

(e.g. by using Kibana Dev Tools):

PUT sonar.measure

{

 "mappings": {

 "sonarqube": {

 "properties": {

 "Id": { "type": "keyword" },

 "bcId": { "type": "keyword" },

 "bcKey": { "type": "keyword" },

 "bcName": { "type": "keyword" },

 "bcQualifier": { "type": "keyword" },

 "floatvalue": { "type": "float" },

 "key": { "type": "keyword" },

 "language": { "type": "keyword" },

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 50

 "metric": { "type": "keyword" },

 "name": { "type": "keyword" },

 "path": { "type": "keyword" },

 "qualifier": { "type": "keyword" },

 "snapshotDate": { "type": "date" },

 "sonarUrl": { "type": "keyword" },

 "value": { "type": "keyword" }

 }

 }

 }

}

Sonarqube Code Issues:
Table 16. Data gathered about quality rules issues with the SonarQube connector: attributes, descriptions, and examples.

Attribute Description Example

sonarUrl URL of the Sonarqube server http://<ip-address>:<port>

snapshotDate Date record was produced (read into
kafka).

2017-09-15T11:30Z

rule Id of violated rule squid:S00122

severity Severity of violation MINOR

component Sonarqube component identifier tomcat:9.x:org/apache/tomcat/
util/net/NioBlockingSelector.java

componentId Sonarqube internal component id 5045

project Sonarqube project id. This equals the
“sonar.projectKey” specified in the
sonar-project.properties file

tomcat:9.x

line Code line of violation 339

startLine Start line of violation 339

startOffset Character offset in startLine 0

endLine End line of violation java

endOffset Character offset in endLine 60

effort Estimated time to solve the issue 1min

debt Issue debt 1min

author Issue author

creationDate Sonarqube creation date 2017-09-14T11:43:37+0200

The index mapping for the Sonarqube Measures index (elasticsearch.sonarqube.issue.schema) has to be

put into Elasticsearch before the connector is run (e.g. by using Kibana Dev Tools):

PUT sonarqube.issue

{

 "mappings": {

 "sonarqube": {

 "properties": {

 "author": { "type": "keyword" },

 "component": { "type": "keyword" },

 "componentId": { "type": "integer" },

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 51

 "creationDate": { "type": "date" },

 "debt": { "type": "keyword" },

 "effort": { "type": "keyword" },

 "endLine": { "type": "integer" },

 "endOffset": { "type": "integer" },

 "key": { "type": "keyword" },

 "line": { "type": "integer" },

 "message": { "type": "text" },

 "project": { "type": "keyword" },

 "rule": { "type": "keyword" },

 "severity": { "type": "keyword" },

 "snapshotDate": { "type": "date" },

 "sonarUrl": { "type": "keyword" },

 "startLine": { "type": "integer" },

 "startOffset": { "type": "integer" },

 "status": { "type": "keyword" }

 }

 }

 }

}

The Sonarqube source connector configuration for both types of records is stored in a properties file

(connect-sonarqube-source.properties):

Attribute Description Example

name Name of the connector kafka-sonar-source-connector

connector.class Classname of the class
implementing the connector

connect.sonarqube.
SonarqubeSourceConnector

sonar.url URL of the Sonarqube server http://<sonar-ip>:<port>/

sonar.user Authentication Username <Username>

sonar.pass Authentication Password <Password>

sonar.basecomponent.key ComponentID for analysis as
defined “sonar.projectKey”
specified in the sonar-
project.properties file

sonar.componentroots.key ComponentID for analysis

sonar.measure.topic Kafka topic name for measures.
Also, name for Elasticsearch
index.

sonarqube.measure

sonar.issue.topic Kafka topic name for issues. Also,
name for Elasticsearch index.

sonarqube.issue

sonar.metric.keys Metric keys to be collected ncloc,lines,comment_lines,complexity,
…
See
https://docs.sonarqube.org/display/
SONAR/Metric+Definitions for full list

sonar.interval.seconds Polling interval. At every poll, a
new set of records is collected,
regardless if data has changed or

86400 (one day)

https://docs.sonarqube.org/display/%20SONAR/Metric+Definitions
https://docs.sonarqube.org/display/%20SONAR/Metric+Definitions

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 52

not. The interval has to be in sync
with the actual sonarqube metric
collection.

An additional configuration file is used to define the Elasticsearch server as a data sink (connect-sonarqube-

elasticsearch.properties). Every Sonarqube item stored in the Kafka server is also passed to Elasticsearch.

Attribute Description Example

name Name of the connector kafka-sonarqube-elasticsearch

connector.class Classname of the class implementing the
connector

io.confluent.connect.elasticsearch.
ElasticsearchSinkConnector

tasks.max Max. number of concurrent tasks 1

topics The Kafka Topic to read, Elasticsearch
index name to store to

sonarqube.measure,sonarqube.issue

connection.url URL of the Elasticsearch Server http://<elasticsearch-server-ip>:9200

type.name Index type name for Elasticsearch sonarqube

One more configuration file defines the basic connector configuration (connect-sonarqube.properties):

Attribute Description Example

bootstrap.servers Kafka Server URL <kafka-bootstrap-server-ip>:9092

offset.storage.file.filename Kafka offset storage, resume
reading source data at the correct
position

/tmp/connect-sonarqube.offsets

rest.port Rest port of the connector. If
multiple connectors are run, this
port has to be different for every
instance

8088

… Standard attributes not shown …

Before running the connector, at least adapt the following configuration values:

 connect-sonarqube.properties:

o bootstrap.servers (set to your kafka server ip)

 connect-sonarqube-source.properties:

o sonarqube.url (set to your sonarqube server url)

o sonarqube.user (valid jenkins username)

o sonarqube.pass (valid password)

o jira.project (projects to collect issues from)

To run the connector for sonarqube, use the following command within the qr-connect directory (put into

one line):

CLASSPATH=qr-connect-0.0.2-jar-with-dependencies.jar

<confluent-kafka-install-dir>/bin/connect-standalone

<qr-connect-install-dir>/connect-sonarqube.properties

<qr-connect-install-dir>/connect-sonarqube-source.properties

<qr-connect-install-dir>/connect-sonarqube-elasticsearch.properties

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 53

Redmine Source Connector
The Redmine connector periodically polls a Redmine API for new and updated issues:

Measures:

Table 17. Data gathered about issues with the Redmine connector: attributes, descriptions, and examples.

Attribute Description Example

redmineURL URL of the Redmine server http://<ip-address>:<port>

project_id Project id (from database) 10

project Redmine project name MyProject

issue_id Issue id 20

tracker One of “Issue”, “Evolution”,
“Assistance” etc.

Issue

tracker_id Tracker id (from database) 99

status Issue status. One of “New”,
“Assigned”, “Resovlved”, ,
“Feedback”, etc.

New

status_id Status id (from database) 100

priority Issue priority (e.g. “Low”,
“Medium”, “High”)

Medium

priority_id Priority id (from database) 101

author Issue author JohnDoe

author_id Author id (from database) 101

assigned_to Issue assigned to person JohnDoe

assigned_to_id Assigned to id from database 102

fixed_version Version where issue was fixed Version-1.3.5

fixed_version_id Fixed version id (from database) 105

subject Issue subject Lore ipsum …

start_date Start date 2017-10-10

done_ratio Percentage issue done 50

created_on Creation timestamp 2014-06-02T07:09:53Z

updated_on Last update timestamp 2014-09-01T07:52:54Z

The index mapping for the Redmine Elasticsearch index (elasticsearch.redmine.schema) has to be put into

Elasticsearch before the connector is run (e.g. by using Kibana Dev Tools):

PUT redmine

{

 "mappings": {

 "redmine": {

 "properties": {

 "redmineURL": { "type": "keyword" },

 "project_id": { "type": "long" },

 "project": { "type": "keyword" },

 "issue_id": { "type": "long" },

 "tracker": { "type": "keyword" },

 "tracker_id": { "type": "long" },

 "status": { "type": "keyword" },

 "status_id": { "type": "long" },

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 54

 "priority": { "type": "keyword" },

 "priority_id": { "type": "long" },

 "author": { "type": "keyword" },

 "author_id": { "type": "long" },

 "assigned_to": { "type": "keyword" },

 "assigned_to_id": { "type": "long" },

 "fixed_version": { "type": "keyword" },

 "fixed_version_id": { "type": "long" },

 "subject": { "type": "text" },

 "start_date": { "type": "keyword" },

 "done_ratio": { "type": "date" },

 "created_on": { "type": "keyword" },

 "updated_on": { "type": "text" }

 }

 }

 }

}

The Redmine source connector configuration is stored in a properties file (connect-redmine-

source.properties):

Attribute Description Example

name Name of the connector kafka-sonar-source-connector

connector.class Classname of the class
implementing the connector

connect.redmine.
RedmineSourceConnector

redmine.url URL of the Redmine server http://<sonar-ip>:<port>

redmine.user Authentication Username,
leave blank for no
authentication

<Username>

redmine.pass Authentication Password <Password>

redmine.created.since Read only issues created after
this date

2000-01-01

redmine.topic Kafka topic name for Redmine
issues. Also, name for
Elasticsearch index.

redmine

sonar.metric.keys Metric keys to be collected ncloc,lines,comment_lines,complexity, …
See https://docs.sonarqube.org/display/
SONAR/Metric+Definitions for full list

redmine.interval.seconds Polling interval. At every poll,
all new and updated issues are
collected. or not. The interval
has to be in sync with the
actual sonarqube metric
collection.

3600 (one hour)

An additional configuration file is used to define the Elasticsearch server as a data sink (connect-sonarqube-

elasticsearch.properties). Every Sonarqube item stored in the Kafka server is also passed to Elasticsearch.

Attribute Description Example

name Name of the connector kafka-redmine-elasticsearch

https://docs.sonarqube.org/display/%20SONAR/Metric+Definitions
https://docs.sonarqube.org/display/%20SONAR/Metric+Definitions

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 55

connector.class Classname of the class implementing
the connector

io.confluent.connect.elasticsearch.
ElasticsearchSinkConnector

tasks.max Max. number of concurrent tasks 1

topics The Kafka Topic to read, Elasticsearch
index name to store to

redmine

connection.url URL of the Elasticsearch Server http://<elasticsearch-server-ip>:9200

type.name Index type name for Elasticsearch redmine

One more configuration file defines the basic connector configuration (connect-sonarqube.properties):

Attribute Description Example

bootstrap.servers Kafka Server URL <kafka-bootstrap-server-ip>:9092

offset.storage.file.filename Kafka offset storage, resume
reading source data at the
correct position

/tmp/connect-sonarqube.offsets

rest.port Rest port of the connector. If
multiple connectors are run,
this port has to be different for
every instance

8088

… Standard attributes not shown …

Before running the connector, at least adapt the following configuration values:

 connect-redmine.properties:

o bootstrap.servers (set to your kafka server ip)

 connect-redmine-source.properties:

o redmine.url (set to your Redmine server url)

o redmine.user (valid jenkins username, or empty if authentication is not needed)

o redmine.pass (valid password)

To run the connector for sonarqube, use the following command within the qr-connect directory (put into

one line):

CLASSPATH=qr-connect-0.0.2-jar-with-dependencies.jar

<confluent-kafka-install-dir>/bin/connect-standalone

<qr-connect-install-dir>/connect-redmine.properties

<qr-connect-install-dir>/connect-redmine-source.properties

<qr-connect-install-dir>/connect-redmine-elasticsearch.properties

GitLab connector (alternative in the ITTI use case)
As an alternative approach to data ingestion with Apache Kafka, for the in the ITTI use case and the GitLab

data source, we have implemented the collection of information using a mixture of Node.js and MongoDB

frameworks. Using JavaScript, we periodically pool the GitLab RESTful interface to retrieve the raw data, as

well as to process, and store information in MongoDB. Similarly, we use JavaScript scripts to periodically

push the pre-processed data the ElasticSearch platform.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 56

Source code structure

The code of the GitLab connector, for the ITTI use case, is arranged in a single directory, which contains

following content:

File/Directory Description

elastic Contains implementation of Graphical User Interface for collected
data visualization

lib Contains scripts implementing data retrieval via GitLab RESTful API

node_modules Third-party libraries

log Contains log files

elk-transporter.js Transports collected data to Elasticsearch via HTTP interface

daily_dbr_push.js Calculate PoC’s factors for QR-Eval tool

historian.js Analyses collected data to calculate metrics

sync_with_gitlab.sh Helper script that synchronizes data on a daily basis

config.json Contains configuration details

GitLab connector

Before the data is being collected, the access details have to be provided. These are maintained in a

‘config.json’ file. An example configuration file has been shown below (Figure 21):

Figure 21. GitLab connector configuration file.

The file contains information about URL address, secret key (an access key instead of a login and password),

and mapping of labels. The URL indicates the hostname, version of the API (currently we only support version

4), and the id of the project to be analyzed (it can be retrieved directly from the GitLab tool). The secret key

is an access token that has to be generated with the GitLab. It prevents from storing user password in a clear

form in the configuration file. Finally, the labels mapping table contains the ids of relevant (for our connector)

labels that are assigned to the issues notes. These labels are further explained in the next sections.

Currently, we store two types of objects retrieved from GitLab, namely: issue and notes. These are arranged

in one-to-many relations, meaning that each issue can have zero or many accompanying notes. As it is shown

below (in Figure 22) these two objects are related with a field named ‘notable_iid’.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 57

Figure 22. Relation between issue and its notes

The example of note is shown below in Figure 23. The object contains information about the author, the

creation and update times, attachment (e.g. picture) and the body. The body field is the most interesting

(from our perspective) since it encodes what kinds of labels have been added (or removed) and by whom.

Figure 23. Example of Issue note object

The example of issue object obtained with the connector is shown in Figure 24.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 58

Figure 24. Example of issue object

The issue allows us to retrieve such information as a unique id, creation time, last update time, assignee, the

milestone (the deadline), author, time estimates (if provided), and state.

Both the objects (issue and note) allow us to record all the changes made on a specific issue. Essentially it

allows us to track when specific issue/ticket has been created, when it was put into a Sprint Backlog, when it

was implemented, tested and finally closed (see Figure 25).

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 59

Figure 25. Example conversation (on GitLab) composed of issue notes.

In the ITTI use case and for GitLab, for each of the issues we have created a kind of Finite State Machine

(FSM) in order to track the current state of the issue. An example is shown in Figure 26.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 60

Figure 26. Example of FMS of an issue. Created is an initial state, while the Closed is a terminal state.

Each issue has it initial state, which is indicated as ‘created’ on the FSM diagram. Afterwards, an issue may

be put into the backlog. This state is indicated as ‘Sprint Backlog’. When a developer is assigned to a specific

issue, the state is changed to ‘In progress’. When the issue is ready, it has assigned ‘Ready’ state. From that

moment, the result of the developer work can be tested by the Q&A engineer and hence the issue can be

moved to the ‘Testing’ state. When all functional tests are successfully passed, the issue is moved to the

terminal state indicated as ‘Closed’. However, when some test fails, the issue is either moved to re-open

state or (it depends on the project) it goes directly to the backlog.

Obviously, the names of the labels indicating specific states as well as the form of the FSM will depend on

the company and the project. Therefore, the mapping table in the configuration file (config.json) allows the

user to indicate what state correlates with a specific label.

The number of FSM we have to track is equal the number of issues that have been defined in GitLab. It would

be overwhelming from the point of view of a user to analyze all of them. Therefore, we calculate project-

wise aggregated metrics for each daily snapshot. The idea is shown in the Figure 27.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 61

Figure 27. Example shown how we calculate daily snapshot statistics for the entire project.

Using that approach we can plot a time-series indicating how the specific metric changed over time (see

Figure 28). In example, as it is shown below we can show, the per-sprint average number of tasks being in

backlog, ‘in progress’ or finished (ready) states.

Figure 28. Metrics assessing the development part: number of tasks in backlog, number of task being under development, and
number of tasks waiting for testing (the values are shown as average calculated for a period of a sprint).

Similarly, we can calculate metrics related to the performance of testing. As it is shown on the Figure 29,

using the FSM we can calculate how many developed module has failed to pass the tests (Failed tests), how

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 62

many testing tasks are pending (Pending tests), and how many bug (Flagged as a bug) issues have been

created.

Figure 29. Metrics assessing the performance of testing.

Moreover, we also calculate additional useful from the perspective of a product owner metrics such as the

total cumulative number of created, tested, and closed issues (see Figure 30). It is also possible to show the

number of still opened issues and the number of delayed issues.

Figure 30. Example of global metrics characterizing general advancement of the project.

Evaluation of technical aspects

In this sub-section, we describe technical aspects and architectural choices behind the implemented pipeline

for GitLab data gathering and analyses.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 63

Scalability: MongoDB offers salability via cluster capabilities. Also, Node.js allows utilizing architectural

design patterns to build scalable web services. Moreover, Node.js is accompanied with the wide spectrum of

libraries allowing for rapid implementation of solutions interfacing with other web systems (e.g. REST APIs),

fast JSON parsing (Node.js is JavaScript-based system), and asynchronous data processing.

Flexibility: Both MongoDB and Node.js are highly oriented on processing JSON-based document files. We

decide to choose these solutions because the data and the interface provided by GitLab tool is based on JSON

notation.

Data structure complexity: In order to measure relevant project-related metrics, we need additional

processing. In fact, the data stored in the GitLab in raw form (day-snapshot) do not contain meaningful

information. The data are part of a project FSM (Finite State Machine). Each daily snapshot, is an action that

changes an internal state of a project model. Therefore, we have to track the current state and apply changes

after each update (snapshot).

How to define the quality model indexes in Elastic.
Execute in Kibana "Dev Tools" the index mappings defined in Table 18, Table 19, Table 20. For instance, the

metric index includes the following properties:

 metric: unique identifier of metric used in Elasticsearch,

 name: defined name of the metric,

 description: description of metric calculation method (e.g. including calculation formula),

 evaluationDate: time of calculation,

 value: current value (normalised metrics can take on values in 0 to 1 range),

 factors: denotes quality factors constituted from given metric,

 datasource: address of the given index (measure) storage.

An example of executing the metrics index mapping is shown in Figure 31.

Table 18. Metrics index mapping.

METRICS INDEX MAPPING

PUT poc.metrics

{

 "mappings": {

 "metrics": {

 "properties": {

 "metric": {

 "type": "keyword"

 },

 "name": {

 "type": "keyword"

 },

 "description" : {

 "type" : "text"

 },

 "evaluationDate": {

 "type": "date"

 },

 "value": {

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 64

 "type": "float"

 },

 "factors" : {

 "type": "keyword"

 },

 "datasource" : {

 "type" : "keyword"

 }

 }

 }

 }

 }

Table 19. Factors index mapping.

FACTORS INDEX MAPPING

PUT poc.factors

{

 "mappings": {

 "factors": {

 "properties": {

 "factor": {

 "type": "keyword"

 },

 "name": {

 "type": "keyword"

 },

 "description" : {

 "type" : "text"

 },

 "evaluationDate": {

 "type": "date"

 },

 "value": {

 "type": "float"

 },

 "strategic_indicators" : {

 "type": "keyword"

 },

 "datasource" : {

 "type" : "keyword"

 }

 }

 }

 }

 }

Table 20. Strategic indicators index mapping.

STRATEGIC_INDICATORS INDEX MAPPING

PUT poc.strategic_indicators

{

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 65

 "mappings": {

 "strategic_indicators": {

 "properties": {

 "strategic_indicator": {

 "type": "keyword"

 },

 "name": {

 "type": "keyword"

 },

 "description" : {

 "type" : "text"

 },

 "evaluationDate": {

 "type": "date"

 },

 "value": {

 "type": "float"

 },

 "datasource" : {

 "type" : "keyword"

 }

 }

 }

 }

 }

Figure 31. Defining quality model indexes in ELK.

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 732253.

Copyright © Q-Rapids consortium – All rights reserved 66

How to customise the quality model and perform the quality model assessment: the qr-

eval-module

Setup
1. Configure index names and project ids (e.g., jira, jenkins, sonarqube.measures) in index.properties.

This is necessary to access to the data producers.

2. Enable/Disable Metrics, set thresholds, and configure target factors in metrics.properties

3. Enable/Disable Factors and configure target indicators in factors.properties

4. Enable/Disable indicators in indicators.properties

Run
Run as executable jar file: java -jar qr-eval-x.y.z-jar-with-dependencies.jar

