
This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 1

D1.1 Data gathering and analysis specification
V2.0

Programme H2020

Funding scheme RIA - Research and Innovation Action

Topics ICT-10-2016 - Software Technologies

Project number 732253

Project name Quality-aware rapid software development

Project duration November 2016 – October 2019

Project website www.q-rapids.eu

Project WP WP1 – Data Gathering and Analysis

Project Task Task 1.1 – Specification of data gathering functionality
Task 1.3 – Elaboration of data analysis requirements

Deliverable ID & name D1.1 Data gathering and analysis specification

Deliverable type X R Document, report

 DEM Demonstrator, pilot, prototype

 DEC Websites, patent fillings, videos, etc.

 OTHER Material that does not belong to any specified category

 ETHICS Ethics requirement

Deliverable version V2.0

Contractual delivery V1.0: 30/04/2017; V2.0: 30/04/2018;

Delivered V1.0: 28/04/2017; V2.0: 27/04/2018;

Responsible beneficiary Organisation

Dissemination level X PU Public

 CO Confidential, only for members of the consortium (including the Commission
Services)

 EU-RES Classified Information: RESTREINT UE (Commission Decision 2005/444/EC)

 EU-CON

Classified Information: CONFIDENTIEL UE (Commission Decision
2005/444/EC)

 EU-SEC Classified Information: SECRET UE (Commission Decision 2005/444/EC)

http://www.q-rapids.eu/

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 2

Version history

Version no. Date Description Author

V0.1 31.03.17 Initial table of contents and structure of the
document. Description of the research
methodology. Q-Rapids “as-is situation”.
Initial Q-Rapids user stories. Initial Q-Rapids
data gathering and analysis architecture
specification.

Silverio Martínez, Andreas
Jedlitschka, Henning Barthel
(Fraunhofer IESE)

V0.2 12.04.17 Updates considering the reviewers’
feedback about the outline. User stories for
data gathering, generic Q-Rapids quality
model, and user stories for data analysis
(i.e., “to-be scenario”). Updated list of data
sources in the architecture specification.

Silverio Martínez (Fraunhofer
IESE)

V0.3 20.04.17 Updates considering first reviewer’s (Lidia
Lopez) comments.

Silverio Martínez (Fraunhofer
IESE)

V0.4 26.04.17 Updates considering second reviewer’s
(Rafal Kozik) comments. Review of Sections
1, 2 and 5. Addition of annexes.

Silverio Martínez, Henning
Barthel, Axel Wickenkamp
(Fraunhofer IESE)

V0.5 27.04.17 Review of Sections 3 and 4. Final complete
review before proofreading.

Silverio Martínez (Fraunhofer
IESE)

V0.6 28.04.17 Proofreading. Sonnhild Namingha (Fraunhofer
IESE)

V1.0 28.04.17 Final version. Silverio Martínez (Fraunhofer
IESE)

V1.1 23.03.18 Initial update changes and new structure
(Section 2).

Silverio Martínez (Fraunhofer
IESE)

V1.2 18.04.18 Updating the document structure based on
feedback from Michal Choras, Prabhat Ram,
and reviewers.

Silverio Martínez (Fraunhofer
IESE)

V1.3 25.04.18 Incorporation on new subsections
explained in Section 2.

Silverio Martínez (Fraunhofer
IESE), Rafal Kozik (ITTI), Prabhat
Ram, Pilar Rodriguez (UOULU)

V1.4 26.04.18 Pre-final version Silverio Martínez, Andreas
Jedlitschka (Fraunhofer IESE)

V2.0 27.04.18 Final version based on feedback from
reviewers.

Silverio Martínez (Fraunhofer
IESE)

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 3

Authors

Organisation Name

Fraunhofer IESE Silverio Martínez-Fernández

Fraunhofer IESE Andreas Jedlitschka

Fraunhofer IESE Henning Barthel

Fraunhofer IESE Axel Wickenkamp

ITTI Rafal Kozik

ITTI Michal Choras

UOULU Prabhat Ram

UOULU Pilar Rodriguez

Reviewers

UPC Lidia Lopez

ITTI Rafal Kozik

Fraunhofer IESE Sonnhild Namingha (proofreading)

Disclaimer

The work associated with this report has been carried out in accordance with the highest technical standards and the

Q-Rapids partners have endeavoured to achieve the degree of accuracy and reliability appropriate to the work in

question. However, since the partners have no control over the use to which the information contained within the

report is to be put by any other party, any other such party shall be deemed to have satisfied itself as to the suitability

and reliability of the information in relation to any use, purpose or application.

Under no circumstances will any of the partners, their servants, employees or agents accept any liability whatsoever

arising out of any error or inaccuracy contained in this report (or any further consolidation, summary, publication or

dissemination of the information contained within this report) and/or the connected work and they disclaim all liability

for any loss, damage, expenses, claims or infringement of third-party rights.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 4

Contents
Executive summary.. 7

1. Introduction ... 8

1.1 Motivation ... 8

1.2 Intended audience ... 8

1.3 Scope ... 8

1.4 Relation to other deliverables ... 8

1.5 Structure of the deliverable .. 9

2. Update from previous (M6) version .. 9

3. Research Methodology .. 10

3.1 Research questions and steps ... 10

3.1.1 Presentation of the use cases .. 11

3.1.2 Interviews .. 12

3.1.3 A software quality workshop ... 12

3.1.4 Consolidation of the Quality Model .. 13

3.1.5 Second round of the software quality workshop for process metrics 14

4. Q-Rapids Data Sources at the Industry Partners ... 15

4.1 Summary of the data sources and tools at the industry partners (as-is scenario) 15

4.2 Integration of heterogeneous data sources .. 18

4.3 Critical Evaluation .. 20

5. User Stories for Data Gathering and Analysis ... 20

5.1 User stories from the use cases ... 21

5.2 Relevant user stories for data gathering ... 22

5.2.1 Product Factor: Code Quality (Maintainability) ... 23

5.2.2 Product Factor: Testing (Reliability) .. 24

5.2.3 Process Factor: Time-to-Complete Issues (Productivity) .. 24

5.2.4 Product Factor: Usage (Functional Suitability) .. 25

5.2.5 Product Factor: Bugs and Issues (Reliability) ... 26

5.3 Relevant user stories for data analysis .. 27

5.3.1 Preparation of data for analysis .. 27

5.3.2 Data analysis approaches .. 28

6. Results of Data Gathering and Analysis: Overview ... 30

6.1 Q-Rapids Quality Model by M18 ... 30

6.2 Results on Data Analysis by M18 ... 33

6.2.1 Using the Quality Model: Quality Alerts and Raw Data Visualization 33

6.2.2 Data Correlation .. 35

6.2.3 Time Series Analysis and Prediction .. 37

7. Specification of the Data Gathering and Analysis Architecture .. 41

7.1 The initial specification (M6) ... 41

7.1.1 The ingestion layer .. 42

7.1.2 Initial tools to be integrated into Q-Rapids for the proof-of-concept. 44

7.2 Lessons learned and current data gathering and analysis specification (M18) 45

Conclusion ... 46

References ... 47

Annex A – Interview scripts for WP1 ... 48

Annex B – Data storage: list of valuable attributes ... 54

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 5

The list of tables
Table 1. GQM workshops details ... 14

Table 2. Detailed results of data sources and tools of the industry partners. .. 15

Table 3. Summary of data available and their corresponding tools in the Q-Rapids industry partners. 17

Table 4. User stories of the Q-Rapids tool about gathering data during software development to assess

quality. ... 21

Table 5. User stories of the Q-Rapids tool about gathering data at runtime to assess quality. 22

Table 6. User stories of the Q-Rapids tool about gathering generic data to assess software quality. 22

Table 7. Q-Rapids quality model. ... 31

Table 8. Q-Rapids quality model: further process metrics .. 32

Table 9. Version Control Data (e.g. SVN, git) ... 54

Table 10. Metrics Data (Vector Version, example metrics) ... 54

Table 11. Metrics Data (Single Metric Version). For each metric e.g., DIT, LCOM .. 55

Table 12. Task Data .. 55

Table 13. Issue Data (useful if they write issue_id during commit info). Maybe to be merged with task 55

Table 14. Duplication Data (Software Clones) ... 56

Table 15. Testing data. .. 56

Table 16. Usage data. .. 56

Table 17. Crashes and errors data. .. 56

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 6

The list of figures
Figure 1. Research Methodology. .. 11

Figure 2. (a) Quality model hierarchy from Quamoco [4], (b) Exemplar Enterprise Architect profile to

represent quality models. ... 13

Figure 3. Summary of the tools used and data sources available in the use cases. .. 18

Figure 4. Heterogeneous data sources available and their connections in the Bittium use case. 19

Figure 5. Excerpt of Q-Rapids quality model for Code Quality (Maintainability). ... 23

Figure 6. Excerpt of Q-Rapids quality model for Testing (Reliability). ... 24

Figure 7. Excerpt of Q-Rapids quality model for Time to Complete Issues (Productivity). 25

Figure 8. Excerpt of Q-Rapids quality model for Usage (Functional Suitability). .. 26

Figure 9. Excerpt of Q-Rapids quality model for Bugs and Issues (Reliability). ... 27

Figure 10. Example of aggregation of metrics into product factors, and product factors into quality factors.

 ... 29

Figure 11. Example of utility functions for assessing the “maintainability” quality factor. 29

Figure 12. Example of utility functions to assess the “maintainability” quality aspect (adapted from

Quamoco). ... 33

Figure 13. Example of actionable analytics for the “fulfilment of critical/blocker quality rules” assessed metric.

It shows the issues divided by severity and normalized by lines code. Besides, a list of blocker and critical

issues that Q-Rapids suggest to take care of. .. 34

Figure 14. Example of actionable analytics for the “ratio of open/in progress bugs” assessed metric. It shows

the ratio of bugs with respect other issues types, the percentage of resolved issues that are bugs, and a list

of open high&highest priority bugs that Q-Rapids suggest to take care of. ... 34

Figure 15 Correlograms backlog size vs. the number of duplicated lines (upper row) and the backlog size vs

number of delayed tasks. The blue dashed lines indicate statistical significance thresholds. Bottom row shows

the correlated series (backlog size on the left and duplicated lines density on the right). 36

Figure 16 Example of signal 𝑦(𝑡) (data) decomposition into seasonal fluctuation, trend, and the reminder.

 ... 37

Figure 17 Examples of moving averages (blue and green) for a signal X. ... 37

Figure 18 Seasonality in the average (per developer) number of completed tasks. 38

Figure 19 Example of prediction idea .. 38

Figure 20 ACF and PACF diagrams. .. 39

Figure 21 Forecasts and confidence thresholds for Holt-Winters and ARIMA models. 40

Figure 22. Prediction vs. true signal (left) and the absolute differences (right). .. 40

Figure 23 Distribution of errors. .. 40

Figure 24. Q-Rapids adjusted lambda architecture. .. 41

Figure 25: Abstract view on data ingestion. .. 42

Figure 26: Main parts of Apache Kafka. .. 43

Figure 27: Apache Camel architecture. ... 44

Figure 28. Q-Rapids adjusted lambda architecture at M18. See evolution with respect to Figure 24. 45

file://///iese.fhg.de/dfs/projects/Q-Rapids/01_Workpackages/WP1-DataGatheringAndAnalysis/Deliverables/D1.1/updateM18/D1.1_v2.0.docx%23_Toc512610046
file://///iese.fhg.de/dfs/projects/Q-Rapids/01_Workpackages/WP1-DataGatheringAndAnalysis/Deliverables/D1.1/updateM18/D1.1_v2.0.docx%23_Toc512610047
file://///iese.fhg.de/dfs/projects/Q-Rapids/01_Workpackages/WP1-DataGatheringAndAnalysis/Deliverables/D1.1/updateM18/D1.1_v2.0.docx%23_Toc512610048

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 7

Executive summary
The deliverable D1.1 is an output of the “Specification of data gathering functionality” (T1.1) and the

“Elaboration of data analysis requirements” (T1.3) tasks. This deliverable mainly has three contributions.

Firstly, the identification of available data sources at the four industry partners of Q-Rapids. We collected this

information at our visits to the premises of these industry partners.

Secondly, we gathered the epics and user stories for the Q-Rapids data gathering and analysis tool. From

these user stories, we have built a generic Q-Rapids quality model, which includes the industry partners’

needs and uses available data sources.

Thirdly, we propose an architecture based on Big Data to integrate heterogeneous data sources. Current

approaches focus on one specific type of data (e.g., static code metrics), but in order to gain better insights,

we consider it necessary to use and combine data from several sources that complement each other (e.g.,

sources for development-related data as well as sources for the actual usage of software products). The

proposed architecture includes potential tools and frameworks that can be used for the collection and

analysis of the data.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 8

1. Introduction
The overall goal of this document is to provide the specification of the data gathering and analysis

architecture for the Q-Rapids tool. The Q-Rapids tool aims at providing integrated information about current

quality issues from both development-related data and the actual system usage.

1.1 Motivation
Q-Rapids is a data-driven project. This means that in order to assess the level of software quality during
development and at runtime, we firstly need to gather and analyse data about that software. This deliverable
provides:

 The data sources available from the use case-specific software systems of each industry partner.

 User stories of the Q-Rapids data gathering and analysis tool, and a generic Q-Rapids quality model
based on the use case-specific software systems of each industry partner.

 A specification of the Q-Rapids data gathering and analysis architecture.

1.2 Intended audience
This deliverable is a report produced for all the members of the Q-Rapids project. Specifically, the results of
this report are interesting and useful for the following stakeholders:

 The industry partners (i.e., Bittium, Softeam, iTTi, NOKIA), who need to know the relevant data for
the assessment of the level of software quality of their use cases.

 The WP2 researchers (UoO), who need the basic metrics reported in this document to support the
planning of the next development steps.

 The WP3 researchers (UPC), who need the basic measures reported in this document to aggregate
them into strategic indicators and to use them for decision-making.

 The WP4 integrators (ITTI), who need to integrate the data gathering and analysis architecture into
the whole Q-Rapids solution.

1.3 Scope
The scope of this document is the entire Q-Rapids project. This version of the document is the result of the

first phase of WP1: the project baseline (from month 1 to month 6). It is going to be used in the next phases

of the Q-Rapids project for the development and deployment of the software solution (i.e., the Q-Rapids

tool). The software solution will be delivered at milestones M15 (proof-of-concept), M24 (prototype) and

M33 (consolidation). Therefore, this deliverable may be updated in case we receive feedback in the

aforementioned phases or in M36 (final release).

1.4 Relation to other deliverables
Due to the initial state of the project, this deliverable does not relate to any other previously produced
deliverables. However, the present document relates to contemporary or future deliverables:

 Deliverable 1.2 consisting of a demonstration of the implementation of the data gathering and
analysis proof-of-concept.

 Deliverable 2.2 including further process metrics identified in the second round of workshops.

 Deliverable 3.1 includes an ontology containing terms used in WP1 and this document.

 Deliverable 4.2 describes the integration of the entire Q-Rapids solution.

 Deliverable 5.1 reports the evaluation strategy of the data gathering and analysis tool of WP1.

 The deliverables resulting from T3.3 (D3.2, D3.3, D3.4, D3.5) will cope with the aggregation of the
quality factors reported in this document into strategic indicators.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 9

1.5 Structure of the deliverable
This document is structured as follows. Section 2 indicates the changes with respect to the previous version

of this document (i.e., changes from v1.0 to v2.0). Section 3 reports the applied research methodology.

Section 4 presents the available data sources from the four use cases of the industry partners. Section 5

defines the user stories and the quality model for the data gathering and analysis tool of Q-Rapids. Section 6

reports latest data gathering and analysis results. Section 7 specifies the data gathering and analysis

architecture of the Q-Rapids tool. Finally, the conclusions are reported.

2. Update from previous (M6) version
The first version of D1.1 was delivered in M6 (April 2017). Between M6 and M18 the following changes in

the document have been made:

 Regarding the research methodology:
o Consolidation of the Q-Rapids quality model (Section 3.1.4)
o Second round of software quality workshops for process metrics (Section 3.1.5)

 Regarding data sources at the industry partners:
o Integration of heterogeneous data sources (Section 4.2)

 Regarding data gathering and analysis results, we added the new Section 6 including:
o The consolidated Q-Rapids quality model (Section 6.1)
o Research results on actionable analytics, correlation, and prediction (Section 6.2)

 Regarding the specification of the data gathering and analysis architecture, we report the decisions
made since M6, the lessons learned, and the current specification (Section 7.2)

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 10

3. Research Methodology
This section reports how the visits to the use cases of the Q-Rapids industry partners were performed. We

use the term use case of a Q-Rapids industry partner to refer to each of the four software systems in which

the Q-Rapids solution will be used. Each industry partner provides one use case. For data anonymization

purposes, we refer to the use cases of the industry partners as UC1, UC2, UC3, and UC4.

3.1 Research questions and steps
In line with the objectives of the first phase of WP1 (project baseline, from month 1 to month 6), we stated

the following three research questions:

 RQ1. What is the current state of quality management at the industry partners?

o Objective: getting to know their use cases (i.e., the software system and project in which

they will use the Q-Rapids tool) and checking their data sources to gather information about

the identified quality issues.

o Step 1: Understanding the as-is scenario of the use cases (see Section 4).

o Instruments: two instruments:

 The industry partners presented their use cases through slides (see details in Section

3.1.1).

 The WP1 researchers conducted face-to-face semi-structured interviews (see details

in Section 3.1.2).

 RQ2. Which quality factors should be measured to support rapid software development?

o Objective: discovering the industry partners’ quality issues and their expectations regarding

Q-Rapids.

o Step 2: Identifying the to-be scenario of the use cases (see Section 5).

o Instrument: The WP1 researchers conducted a software quality workshop (see details in

Section 3.1.3).

 RQ3. How can we use Big Data technologies to gather data from heterogeneous sources of software

development and analyse the relevant quality requirements?

o Objective: specifying an architecture for the data gathering and analysis tool of Q-Rapids.

o Step 3: from “as-is” to “to-be” (see Section 7).

o Instrument: architectural synthesis.

During the first month of the project, we devised the research methodology. During months 2 to 4 of the

project, we visited the four industry partners. During months 5-6, we analysed and synthesised the collected

data.

To answer the three research questions, we followed the research methodology depicted in Figure 1, which

consists of three sequential steps (one for each research question). The first two steps relate to the “empirical

acquisition of data”, and the third step to the “construction of the architecture” (these steps are proposed

by Galster et al. [1] for building empirically-grounded architectures). The three steps can also be mapped to

the process for creating architectures proposed by Nakagawa et al. [2]: information source investigation,

architecture analysis, and architecture synthesis. Figure 1 shows on the right side of each step the output

(i.e., contribution) of each step. In the next phases of the Q-Rapids project, we are going to conduct a fourth

step for “validation and evaluation” of the architecture, which is also the next step in the proposals of Galster

et al. [1] and Nakagawa et al. [2].

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 11

Figure 1. Research Methodology.

We will report the instruments used to answer our research questions in the following subsections.

3.1.1 Presentation of the use cases
Each industry partner showed its use case by presenting a set of slides. The goal was twofold: firstly, to

present the context of the use case at the respective company, and secondly, to foster a shared mindset

about the use case by both the team members of the use case (between 3 and 10 members) and the academic

partners of Q-Rapids (between 3 and 8 members). The presentations followed the structure indicated below:

 Context & Current State: “as-is”

o Environment and scope: brief description of the type of projects and products at the

company.

o Use case context: brief presentation of the context of the selected project and product(s)

under study in the use case of the company.

o Development process: brief description of the current software development process and

the main roles in the use case.

o Quality requirements: brief description of 1 to 3 quality requirements and how they are

currently managed in the use case.

o SWOT analysis and motivation: highlighting of the current problem for the selected project

and product(s) in the use case.

 Expectations regarding Q-Rapids: “to-be”

o Brief summary of the industry partner’s expectations regarding Q-Rapids.

o Description of one example of how Q-Rapids could help to manage quality requirements in

their use case.

The presentation of the use case typically lasted between 45 minutes and one hour.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 12

3.1.2 Interviews
We conducted one-hour semi-structured interviews with quality managers and developers to gather the

following information:

 Section 1: As-is scenario of the use case. To identify data sources:

 Which different data sources and their corresponding (repeatable) technologies do you have at

the company for:

 Projects (e.g., planning and effort sheets)?

 Development (e.g., code repositories, bug reports)?

 System behaviour (e.g., system logs)?

 Software usage (e.g., profiling data, performance measures)?

 User feedback (e.g. questionnaires, complaints, maintainability/change requests)?

 Any other important sources (not to lose any data)?

 Section 2: To-be scenario of the use case. To identify user stories related to data analysis:

 What information about actual quality issues (of the software system(s) of the use case) would

Q-Rapids provide to you?

 Section 3: Acceptance and impact of Q-Rapids. To identify user stories related to the acceptance of

the architecture.

 What quality characteristics should the Q-Rapids tool have to be accepted and used in your

company?

The complete interview scripts are available in Annex A.

3.1.3 A software quality workshop
Bearing in mind that relevant quality factors of software systems should be considered during the software

development process, we proposed and conducted at each industry partner an integrated workshop for the

creation of a measurable quality model, to proceed from strategic business goals to quantifiable metrics. The

workshops demonstrated a workflow and corresponding moderation methods that allow using

GQM+Strategies™ [3], Quamoco [4] and GQM [5] to build such a quality model and to visualise the findings.

A brief explanation of these three approaches is given below.

GQM+Strategies™ aligns the goals and strategies of an organisation across different units through

measurement. Besides a clear understanding of what the goals of the organisation are, the use of

GQM+Strategies™ facilitates communication between different units by creating a common understanding.

It helps to show the developers their contribution to the higher-level key performance indicators. Usually,

this is possible because there are enough goals or strategies depending on the product quality. During the

workshop, we identify the organisational goals underlying software quality.

Quamoco solves the problem of traditional software quality models, which provide either abstract quality

characteristics or concrete quality measurements, by integrating both aspects. It provides a generic quality

model that needs to be tailored to a company’s specific strategic goals. We use ISO/IEC 250101 as the generic

model to match the specific quality goals identified during our workshop sessions.

GQM provides an approach for goal-oriented measurement. Starting from the goals, questions are derived.

By answering these questions, the respective metrics quantifying the goals are defined. GQM thus provides

a way to define a metric and interpret it. This allows demonstrating how to make quality aspects measurable

and where to get the data from. In our workshops, we examined how to integrate the model, i.e., the

1 ISO/IEC 25010:2011. Systems and software engineering -- Systems and software Quality Requirements and Evaluation
(SQuaRE) -- System and software quality models. https://www.iso.org/standard/35733.html

https://www.iso.org/standard/35733.html

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 13

measurement, the analysis and the derived feedback, into the software development process of the

respective industry partner.

Representing Quality Models: An Introduction to Quamoco

To represent the quality models, we use the quality model concepts defined in Quamoco [4]. These concepts

are explained in the ontology of Deliverable 3.1. Briefly stated and as shown in Figure 2 (a), we have four

levels: quality aspects, product factors, measures and instruments/software products. We created the quality

models of this document by using a customised Enterprise Architect profile for quality models. Figure 2 (b)

shows an example with the four levels mapped to Quamoco: quality factor, product factor, metric and data

sources. In Q-Rapids, abstract quality aspects are broken down into product factors (attributes of parts of the

product that are concrete enough to be measured), assessed metrics (concrete descriptions of how specific

product factors should be quantified and interpreted for a specific context), and raw data (i.e. the data as it

comes from the different data sources, without any modifications). Nowadays, operationalised quality

models offering actionable analytics for multiple purposes (system, process, and usage) are still a challenge.

(a) (b)

Figure 2. (a) Quality model hierarchy from Quamoco [4], (b) Exemplar Enterprise Architect profile to represent quality models.

3.1.4 Consolidation of the Quality Model
Based on the workshops’ results, we specified practitioners-relevant user stories. Moreover, we created the

Q-Rapids quality model by comparing, relating, and integrating the company-specific quality models. Thus,

we identified commonalities and variabilities regarding relevant product and process factors as well as

metrics among the four companies. We also checked those factors and metrics regarding to its feasibility to

be automatically measured. Then, we presented the Q-Rapids quality model in two face-to-face meetings to

a subset of the participants who attended the quality workshops. These meetings were intended for getting

«QualityFactor»

Quality Factor

Example

«ProductFactor»

Product Factor

Example

«Metric»

Metric example

«DataSource»

Data Source Example

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 14

further feedback and improving the Q-Rapids quality model. Although there were more metrics identified in

the workshops, the Q-Rapids quality model includes an initial list being applied in the four companies.

We elicited and implemented the Q-Rapids quality model between December 2016 and December 2017. In

total, 20 practitioners working in RSD attended to the quality workshops and were involved in the review of

the company-specific quality models, and eight participants attended the face-to-face workshops for

providing feedback on the Q-Rapids quality model. The Q-Rapids tool includes the implementation of the Q-

Rapids quality model as well as the gathering, integration, and analysis of the required data.

Section 6.1 includes the consolidated version of the quality model, which could evolve in further validations

in the companies.

3.1.5 Second round of the software quality workshop for process metrics
A second round of software quality workshop was conducted to further explore the metrics that industry

partners find relevant from software development process perspective. Twelve GQM workshops were held

(three sessions with each industry partner) to enquire about the process metrics that could supplement the

quality model developed during the first workshop. Table 1 provides details of these GQM workshops:

Table 1. GQM workshops details

Workshop
Session

Use Case
of

Participants
Role (# participants)

GQM Workshop
1

UC1 4
Architect/Developer, Project Manager, R&D Manager,
CEO/Product Owner

UC2 4 Quality Lead, Developers (2), Requirement & Process Lead

UC3 8
Quality Manager (2), Project Manager, Developer (3),
Development Manager (2)

UC4 3 Product Owner, Project Manager, System Designer

GQM Workshop
2

UC1 2 Architect/Developer and R&D Manager

UC2 4 Quality Lead, Developers (2), Requirement & Process Lead

UC3 5
Quality Manager, Project Manager, Developer (2),
Development Manager

UC4 2 Product Owner, Project Manager

GQM Workshop
3

UC1 1 Architect/Developer

UC2 4 Quality Lead, Developers (2), Requirement & Process Lead

UC3 4 Quality Manager, Project Manager, Developer (2)

UC4 1 Project Manager

The existing quality model at M12 was presented to the industry partners while eliciting the process metrics.

The aim was to build upon the existing quality model. Thus, looking from a process perspective, practitioners

discarded those factors/metrics that were not relevant from a process point of view and elaborated upon

those that were of interest to them. Thus, new metrics/factors also emerged during these workshops, to be

incorporated into the quality model. Further details on the way in which these workshops were conducted

are presented in D2.2 (Section 2).

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 15

4. Q-Rapids Data Sources at the Industry Partners
This section presents the data sources available from the four use cases of the industry partners. This

information was collected during the visits to the industry partners (see Section 2).

4.1 Summary of the data sources and tools at the industry partners (as-is scenario)
During the visit to the industry partners, we could see the current state (i.e., as-is scenario) of the respective

use case regarding the available data sources. Table 2 reports the data sources available for the different

types of data (first column) of each use case (columns 2 to 5).

Table 2. Detailed results of data sources and tools of the industry partners.

Data about…. UC1 UC2 UC3 UC4

Data sources and tools for project data

Effort (planned) None JIRA (for epics and
user stories)

Planned in the backlogs,
FocalPoint, DOORS

GitLab (Each task is
assigned to a
particular person and
is estimated
according to the
knowledge of the
product owner)

Effort
(real/tracked)

Effort sheets weekly
(difficult to get)

Elbic (own software
for invoicing)

Attlassian JIRA (real
effort is not that
reliable/trusted)

GitLab (ticketing
system, how much
time was spent on a
particular task)

Planning
(backlog)

Redmine
(containing
features), Word
(cycles of 6 months)

JIRA (requirements
management)

Many sites (e.g.,
multilevel backlogs,
“platform service”),
mainly Excel (pain point),
e.g., R&D backlog in
Excel. Moving to a real
database.

Scoping sections with
customers GitLab
(user stories and
Kanban issue
management)

Data sources and tools for development data

Code SVN repository Git, Gerrit (code
collaboration)

Git (SVN tool) GitLab

Documentation Models (code is
reversed into
models), API

Excel-based
documents

“SerNet” Wiki page

Bugs Mantis (bug
reporting)

JIRA (bugs and errors) “Pronto” tool, “Normal”
tool

GitLab

Data sources and tools for system behaviour data

Log files Yes (different levels,
can be collected for
end users, contain
systems actions)

Yes (collected from
tests in real devices
(SpiraTest with
physical product
information), difficult
to collect from end
users)

Yes (different levels,
different types, e.g.,
system, memory
dumps). Read with text
editors (no further tools)

Yes (in the
production
environment)

Performance Java Engineering
tools

SpiraTest Tests (for stability and
performance) need to be
fulfilled before release

-

Network
monitoring

- Kibana, Elasticsearch - Zabbix, Nagios

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 16

Data sources and tools for system usage data

Usage statistics No Kibana, Elasticsearch
(complete?)

No; platform services
(the end users are
developers of
applications using the
platform). In
applications, yes.

Partially in Zabbix,
e.g., web scenarios
execution stats

Usage feedback Gforce, Salesteam
(Salesforce) for
customers
(connected with
Mantis), and Forum
for open-source
users (connected
with Redmine)

Bittium Customer
Care (connected with
JIRA)

Complaints, usage
reports

-

Other data sources and tools

Code quality SonarQube SonarQube They focus on faults.
Different portals:
SonarQube, Klocwork

SonarQube, GitLab

Tests JUnit SpiraTest (connected
to JIRA)

(static and dynamic) Spring framework
(dedicated library)

Continuous
Integration (CI)

Jenkins Many tools (they
have a complete list
in CITA tools): JIRA,
Jenkins

Jenkins Jenkins

Scenarios/IU
validation

TestLink (previously
used), QFS: Quality
First Software (new
tool to be used)

Yes - -

API Yes - - -

Others - - - Flyway (database
migrations)

We classify the data sources in two categories depending on when data is gathered: during development or

at runtime. Table 3 summarises each type of data (i.e., the different entities of interest) and their

corresponding quality-relevant tools used in the four use cases. As in [4], we use the term ‘entities’ to

describe the things that are important for quality and ‘properties’ for the attributes of the things we are

interested in. Table 3 also indicates in how many use cases (out of 4) the tools are used.

During software development, we found data sources about the project and development. This can be

respectively mapped to the topic of improving the software development process productivity and software

system quality by Zhang et al. [6].

Project data is on tools for managing the backlog containing the tasks and issues to be done at each sprint as

well as estimated and real effort (e.g., Redmine, JIRA, GitLab), and tools for monetary investment (mostly

proprietary). Issue tracking tools are common for the four use cases whereas they use different ones.

Therefore, basic information about issues is available in all use cases. However, there is also diversity in the

data introduced in these tools. For instance, estimated time and real effort is not introduced in one use case.

In addition to these tools, a use case also uses an instance of a bug tracking system (called Mantis) just for

bugs. It is important to notice that the industrial partners also use other generic data containing indirect

metrics for quality factors and variation factors, such as the employees portfolio containing their experience.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 17

Development data can be found in repositories (e.g., SVN, git, GitLab), and documentation (e.g.,

diagrammatic models, Excel files, Wiki pages, Confluence). Again, software versioning systems are common,

meaning that commit information is available, but use cases have their own preferences concerning tools.

Other development data relates to code quality (e.g., SonarQube, Klocwork, GitLab), testing and continuous

integration (e.g., Jenkins, SpiraTest, QFS). Here we found that SonarQube and Jenkins are very popular and

used in the four uses cases. Still, the configuration and importance of quality profiles in SonarQube is

different among uses cases (for instance, which quality rules are analysed or which thresholds about testing

coverage should be accomplished). Jenkins is used in a similar way in all use cases for the continuous

integration pipeline. Industry partners with many software products have many Jenkins instances.

At runtime, we find data sources about the system behaviour and its usage. This can be mapped to improving

the software users experience topic by Zhang et al. [6]. System behaviour data may be collected from logs

and monitoring tools (e.g., Kibana, elastic, Naggios). Logs are heavily used in all uses cases at different levels,

although it is challenging to get all end users’ logs due to privacy issues. For the use cases involving different

hardware needs, it is relevant to have logs’ meta-data consisting of the device in which software is running.

Besides, the usage of the software generates useful information such as statistics about how it is used, and

feedback directly provided by the end user (e.g., hotlines, Gforce, proprietary software). The tools used here

are completely heterogeneous among use cases.

Table 3. Summary of data available and their corresponding tools in the Q-Rapids industry partners.

When is
data

collected?

Topic (see
[6])

What is collected (i.e.,
entities)?

Where is the data
(i.e., tools)?

Data sources and tools
(frequency)

During
Software
Development

Software
development
process

Product backlog, issues,
iterations (a.k.a. sprints), effort,
milestones, releases

Issue tracking system Jira (2/4), Redmine (1/4),
GitLab (1/4), Mantis (1/4), and
proprietaries tools for
invoicing

Code reviews Code reviews system Gerrit (2/4), GitLab (1/4)

Employees experience Diverse proprietary
tools

n/a

Software
system

Source code, commits Code repository SVN, Git, GitLab

Software documentation,
requirements

Diverse tools Confluence (2/4), DOORS
(1/4), and others (e.g.,
diagrammatic models, Excel
files, Wiki pages)

Static code analysis: software
metrics and quality issues

Static code analysis
tools

SonarQube (4/4), Coverity
(1/4), CodeSonar (1/4),
Klocwork (1/4)

Exectuted tests, builds Testing and
continuous
integration tools

Jenkins (4/4), Robot
framework (2/4), Spiratest
(1/4), QFS (1/4)

At runtime Software
users

System behaviour Logs, network
monitoring tools

Logs (4/4), Zabbix (1/4),
Naggios (1/4), Elastic stack
(1/4)

System usage Logs, monitoring
plugins

Logs (4/4), SafeMove Analytics
(1/4)

Customer feedback Proprietary
questionnaires,
hotlines, forums

Forum (1/4), ServiceDesk
(1/4), Digium Enterprise (1/4),
and proprietaries tools

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 18

Figure 3 aggregates the tools used by all industry partners for each type of data.

Figure 3. Summary of the tools used and data sources available in the use cases.

4.2 Integration of heterogeneous data sources
Now that we know the data sources and tools in each company, one question arises: how is data linked

among these data sources? To answer this question, we study each use case. In this section, we detail the

scenario in Bittium use case. Figure 4 shows the different entities (e.g., issues, commits, and logs) under study

in the Bittium use case. Following the Table 3 format, the entities are divided regarding their topic (software

development process, software system, or software users). Next, we report the flow about how the data

from these entities is connected.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 19

Figure 4. Heterogeneous data sources available and their connections in the Bittium use case.

First of all, the product owner together with project manager assigns the people to certain project, by

checking the employees experience with technologies. This information is available from a proprietary tool

called comma and the resourcing meetings.

When the project starts, the epics are defined in Jira. The epics (main requirements and product

requirements) are just an issue type together with the use cases. As the project evolves, more concrete issues

are created, from user stories to subtasks. During sprint planning, the product owner indicates the issues to

be resolved in the current sprint, and estimate the effort with story points. Therefore, it is known to which

iteration(s) an issue is assigned. This is handled by the Jira.

After sprint grooming and planning, the team is ready to start working in their assigned issues. As they work

on issues, they generate documentation, which is stored either in SVN (normally documentation generated

from code) and in Confluence (relevant manual documentation in the development environment). The actual

code is stored in Git. Indeed, the documentation and Jira issues provide a good overview of what parts of the

architecture are already done in each version. Besides documentation, the team commit source code to

Gerrit. An important note is that by using a plugin in Gerrit, each commit comment has a template including

the identifiers of the issues in Jira. Therefore, issues commits can be reached via hyperlinks from Jira.

After a commit is performed, automatic module and system tests are triggered in Jenkins. Therefore, the

tests results can be associated to a commit. Other test frameworks are used in a lower extent, like

RobotFramework and SpiraTest. Still, in most of the projects, Jenkins includes all the relevant pipeline. The

builds in Jenkins also trigger the static code analysis to be performed either by SonarQube or CodeSonar.

When a developer decides to handle a quality rule violation from CodeSonar, it is added in Jira with a link.

Once the committed source code includes automatic builds/tests results and static code analyses, the team

colleagues start with the code reviews. Code reviews are not done over intermediate results, requiring the

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 20

results of automatic build and tests, and metrics and quality rules violations from static code analysis.

However, there are no enforced rules while reviewing, except that an author cannot accept her own changes.

There are some Key Performance Indicators (KPIs) to be achieved, related to test coverage, code complexity,

etc. However, these KPIs are not really listed anywhere and can change. Reviewers’ normal activities include

running new/own tests themselves, and other activities like peer reviews if they consider it necessary.

Information of the code reviews is stored in Gerrit. Code reviews can be read from Jira thanks to a Gerrit

plugin. If the commit is rejected, the assignee has to continue working in order to push another patchset.

When the commit is accepted, then it is moved to the source code main line, which is in Git. Therefore, when

source code is accepted, it can be known under which test results and static code analysis characteristics was

accepted.

The approved source code in git is heavily tested in night builds. Contrary to the aforementioned tests, these

night builds additionally include stress testing and stability testing (i.e., tests executed several times in a row).

Bittium aims for continuous delivery (not continuous deployment). Therefore, after successful night builds,

the product owner may decide to create a new release. Then, the new release is created in Git and associated

to Jira.

When the new release is being used, it is when runtime data becomes necessary. Bittium receives customer

feedback through the Atlassian JIRA ServiceDesk tool and Digium Enterprise. The customer feedback

normally relates to bugs, and the device functionalities. The logs from both end users and executed tests are

also gathered and push to Elastic for further mining. It is important to identify crashes, errors, bugs, and

performance problems. Also, with SafeMove Analytics, more runtime aspects are monitored, such as crash

logs. This information is linked to Jira when new issues of type ‘error’ are immediately created.

4.3 Critical Evaluation
The current state of the industrial partners is that they gather data from different data sources, but they do

not aggregate this data in order to use it to assess the software quality. There is one notable exception: UC2

has a dashboard integrating different tools, namely Jenkins, SonarQube, JIRA and Kibana. However, no use

case integrates and combines these data sources to offer combined or aggregated metrics and indicators.

Therefore, we decided to investigate this gap to determine whether it would be useful for them to have

combined or aggregated metrics and indicators. We will explain this investigation in the next section.

5. User Stories for Data Gathering and Analysis
In this section, we describe the “to-be” scenario, where we aim at being able to assess the quality of software

in rapid software development processes with the Q-Rapids tool. To create such a “to-be scenario”, we

conducted three activities.

Firstly, we gathered the user stories elicited during the interviews and the workshops and identified from our

own research into the use cases. They are defined in the Redmine instance of Q-Rapids2 (see Section 5.1), to

which the reader is referred for details. Secondly, we analysed the commonalities (i.e., data available from

all partners) among the four use cases to select the user stories for the data gathering tool of Q-Rapids (see

Section 5.2). Thirdly, we elicited the requirements for the data storage, aggregation and analysis of the Q-

Rapids tool (see Section 5.3).

It is important to note that other relevant user stories about quality requirements and constraints of the tool

are defined in “Table 7: Enablers for successful adoption of the Q-Rapids framework” of Deliverable 5.1. An

2 Redmine instance of Q-Rapids: http://193.142.112.120/redmine

http://193.142.112.120/redmine

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 21

example is integration with existing systems: “As product owner, I want to have integration with existing

systems, so that no new systems will be needed for data gathering”.

5.1 User stories from the use cases
The user stories elicited during the visits to the use cases are divided by epics:

 Epic 1: As a Q-Rapids researcher, I want to gather data during software development, so that we

can systematically assess the level of software quality (see Table 4).

 Epic 2: As a Q-Rapids researcher, I want to gather data at runtime, so that we can systematically

assess the level of software quality (see Table 5).

 Epic 3: As a Q-Rapids researcher, I want to gather other data (besides data gathered during

software development and at runtime), so that we can systematically assess other aspects of the

level of software quality (see Table 6).

Table 4. User stories of the Q-Rapids tool about gathering data during software development to assess quality.

#3 Description

44 As a developer/product owner, I want to gather the time/effort needed to implement the same or a
similar functionality, so that we can estimate how much time is needed to implement similar
functionalities.

41 As a project manager, I want to gather the time/work effort used for variants in their first software
release, so that we can predict variant reusability.

40 As a developer, I want to gather data about the impact a code change has on complexity, so that we
can identify how rising complexity deteriorates maintainability.

39 As a product owner/project manager, I want to gather data about content delivered at Feature
Build (FB) compared to planned content on exit so that we can see the planning capability and
accuracy of the team.

38 As a quality manager, I want to gather data about requirements quality (e.g., percentage of unfilled
data fields, standard tool for requirements), so that we can identify inadequate information or
missing information in requirements.

37 As a test manager, I want to gather data about the quality and stability level of regression testing, so
that regression tests cases are not failed or skipped (ensuring reliability and integratability of the
platform)

36 As a code guardian, I want to gather data about how coding guidelines are followed (e.g.,
complexity and function size, coverage and duplications, and technical debt), so that we can
manage resources for maintainability.

35 As a program manager, I want to gather data about how many individual software components can
be initially deployed, so that we can analyse the possibility to deliver software in smaller entities.

34 As a product owner/release manager/program manager, I want to gather data about the
completeness of sub-features in iteration (i.e., what is planned and what is actually done), so that
we can know how many features are ready only in the last iteration before branching for
stabilisation or even later.

15 As a quality assessor and integrator, I want to gather data about the current state of the integration
process, so that we can improve the quality of the code delivered by the developers.

14 As a developer and integrator, I want to gather data about the quality of the code committed by the
developers, so that we can improve the quality of the code delivered by the developers.

13 As a quality assessor, I want to gather data about the number of defects discovered during
validation and in operation, so that the proportion of bugs discovered in validation and in operation
is completely clear.

3 We show the identifier of each user story (automatically assigned by Redmine) for traceability reasons.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 22

Table 5. User stories of the Q-Rapids tool about gathering data at runtime to assess quality.

Description

45 As a product owner/UX designer, I want to gather data about product usage (e.g., total time spent
on functionalities, and most/least used functionalities), so that we can know if an application is used
and to what extent.

42 As a quality manager, I want to gather product reliability data for KPIs (e.g., MTBF), so that we can
maintain efficient service capability/quality/prioritisation.

12 As a product director, I want to gather data about the most critical issues in operations, so that it is
completely clear what the most critical issues are (we need stats over time and over user base).

11 As a product director, I want to gather data about the features heavily used by customers, so that it
is completely clear how heavily each feature is used by customers and why.

Table 6. User stories of the Q-Rapids tool about gathering generic data to assess software quality.

Description

43 As a project manager, I want to gather data about the team skill level, so that I can evaluate team
composition.

5.2 Relevant user stories for data gathering
We identified five common and relevant product or process factors for the industry partners of Q-Rapids. As

we showed in the user stories above, there are more product factors, but we chose this subset because of

their relevance and the commonalities among the industry partners. Three factors are relevant during

software development, whereas two factors need data at runtime. We list them below, also indicating

between brackets to which quality factor they are related and their main data sources.

 During software development:

o Product Factor: Code Quality (Maintainability)

 Main data sources: SonarQube, code repositories (e.g., SVN, Git, GitLab),

Jenkins, Gerrit

o Product Factor: Testing (Reliability)

 Main data sources: Jenkins, SonarQube, other testing tools (e.g., TestLink)

o Process Factor: Time to complete issues (productivity from the process point of view).

 Main data sources: issue tracking tools (e.g., Redmine, GitLab, JIRA)

 At runtime:

o Product Factor: Usage (Functional Suitability)

 Main data sources: log files from software used at runtime

o Product Factor: Bugs and Crashes (Reliability)

 Main data sources: log files from software used at runtime, network monitoring

tools (e.g., Kibana, Zabbios, Nagios)

We will describe these five factors in detail below. For each relevant product or process factor, we will

describe related user stories, a visual representation of a quality model containing exemplar metrics for that

product factor and some relevant attributes that could be stored in the Q-Rapids tool.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 23

5.2.1 Product Factor: Code Quality (Maintainability)
The industry partners are interested in the code quality of the current build, in coding guidelines and in code

complexity:

 As a developer and integrator, I want to gather data about the quality of the code committed by the

developers, so that we can improve the quality of the code delivered by the developers.

Figure 5. Excerpt of Q-Rapids quality model for Code Quality (Maintainability).

 As a code guardian, I want to gather data about how coding guidelines are followed (e.g., complexity

and function size, coverage and duplications, and technical debt), so that we can manage resources

for maintainability.

 As a developer, I want to gather data about the impact a code change has on complexity, so that we

can identify how rising complexity deteriorates maintainability.

Figure 5 shows relevant metrics for code quality, such as quality rules fulfilment/violation, complexity metrics

and technical debt indices from static code analysis (e.g., SonarQube). Important attributes to be saved

regarding code quality metrics are shown in Table 10, Table 11, and Table 14 of Annex B. It is important to

combine these code quality metrics with the information about commits from the code repositories (e.g.,

SVN). Important attributes to be saved regarding commits are shown in Table 9.

«ProductFactor»

Code quality

«Metric»

Number of violations

of quality rules by

criticality

«Metric»

Percentage of

comments coverage

«DataSource»

SonarQube
«DataSource»

Code repositories

(e.g., SVN, Git,

GitLab)

«QualityFactor»

Maintainability

«Metric»

Commit info (e.g, size,

author, tracking to issue

id, lines

added/modified/deleted)

«Metric»

Function size,

average size,

number of

documents

«Metric»

Code complexity

metrics (e.g.,

McCabe)

«Metric»

Technical debt index

static code analysis

information from repositories

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 24

5.2.2 Product Factor: Testing (Reliability)
The industry partners are interested in monitoring the testing and integration activities during the software

development process:

 As a test manager, I want to gather data about the quality and stability level of regression testing, so

that regression tests cases are not failed or skipped (ensuring reliability and integratability of the

platform)

 As a quality assessor and integrator, I want to gather data about the current state of the integration

process, so that we can improve the quality of the code delivered by the developers.

Figure 6. Excerpt of Q-Rapids quality model for Testing (Reliability).

Figure 6 shows the relevant metrics for testing and integration, such as test coverage from static code analysis

(e.g., SonarQube), and the results of tests from continuous integration tools (e.g., Jenkins). Important

attributes to be saved regarding testing are shown in Table 15 of Annex B.

5.2.3 Process Factor: Time-to-Complete Issues (Productivity)
The industry partners are interested in assessing the accuracy of estimation during planning and time-to-

complete issues:

 As a product owner/project manager, I want to gather data about content delivered at Feature Build

(FB) compared to planned content on exit, so that we can see the planning capability and accuracy

of the team.

«ProductFactor»

Testing

«ProductFactor»

Readiness for

integration

«Metric»

Test coverage (e.g.,

regression testing)

«Metric»

Percentage of results

(i.e., pass/fail) of

tests (e.g., unit

testing, regression

testing)

«DataSource»

SonarQube
«DataSource»

Jenkins

«QualityFactor»

Reliability

«Metric»

Number of tests

(done and

automated)

«ProductFactor»

Integrability

«Metric»

Number pass/no

pass commit

integration per

feature weekly

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 25

Figure 7 shows the relevant metrics for the accuracy of planning tasks and the productivity of closing tickets

for tasks and issues, such as estimated time and real invested time for a task from an issue tracking tool (e.g.,

JIRA). Important attributes to be saved regarding tasks and issues are shown in Table 12 and Table 13 of

Annex B. It is important to combine this information with commit information to get data about the effort

invested in code changes. For this, it is crucial that developers indicate the id of the task or issue in the commit

description.

Figure 7. Excerpt of Q-Rapids quality model for Time to Complete Issues (Productivity).

5.2.4 Product Factor: Usage (Functional Suitability)
The industry partners are interested in the main usage of their products (i.e., statistics about the usage of

applications):

 As a product director, I want to gather data about the features heavily used by customers, so that it

is completely clear how heavily each feature is used by customers and why.

 As a product owner/UX designer, I want to gather data about product usage (e.g., total time spent

on functionalities, and most/least used functionalities), so that we can know if an application is used

and to what extent.

Figure 8 shows the relevant metrics for the statistics of product usage, such as the number of times a feature

is used. This information may come from analysis of log files. Important attributes to be saved regarding

usage statistics are shown in Table 16 of Annex B.

«Metric»

Planned/estimated

effort for a

task/issue

«Metric»

Real invested effort

in a task/issue

«Metric»

Average time-to-

react to tasks or

issues

«ProcessFactor»

Productivity

«DataSource»

Issue tracking tool

(e.g, Redmine, JIRA,

GitLab)

«QualityFactor»

Productivity (others,

not ISO 25010)

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 26

Figure 8. Excerpt of Q-Rapids quality model for Usage (Functional Suitability).

5.2.5 Product Factor: Bugs and Issues (Reliability)
The industry partners are interested in product reliability, the main pain points of products and the

discovered bugs:

 As a quality assessor, I want to gather data about the number of defects discovered during validation

and in operation, so that the proportion of bugs discovered in validation and in operation is

completely clear.

 As a product director, I want to gather data about the most critical issues in operation, so that it is

completely clear what the most critical issues are (we need stats over time and over user base).

 As a quality manager, I want to gather product reliability data for KPIs (e.g., MTBF), so that we can

maintain efficient service capability/quality/prioritisation.

Figure 9 shows the relevant metrics for crashes at runtime from logs and network monitoring tools (e.g., Kibana). Important attributes
to be saved regarding errors and crashes are shown in

Table 17 of Annex B. It is important to combine and compare this data with the issues reported in issue

tracking tools (e.g., JIRA, Mantis).

«ProductFactor»

Usage

«Metric»

Number of times a

feature is used (i.e.,

frequency)

«QualityFactor»

Functional suitability

«DataSource»

Logs files from

software used at run-

time

«Metric»

Time using a feature by

end users (e.g., time

spent in functionalities)

«Metric»

Number of projects

with a specific

feature

«DataSource»

Software

documentation

version
usage statistics

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 27

Figure 9. Excerpt of Q-Rapids quality model for Bugs and Issues (Reliability).

5.3 Relevant user stories for data analysis
The relevant user stories for data analysis are also divided by epics:

 Epic 4 (preparation of data for analysis): As a Q-Rapids researcher, I want to prepare the data for

data analysis optimally, so that the Q-Rapids data storage can be exploited by Big Data analysis

approaches.

 Epic 5 (data analysis approaches): As a Q-Rapids researcher, I want to analyse basic metrics of

quality requirements, so that we can create alerts in case of deviations in quality requirements

and show their current status.

5.3.1 Preparation of data for analysis
The relevant data identified in Section 5.2 needs to be prepared for data analysis. We identified the following

relevant user stories:

 Computation of basic metrics from possibly diverse data sources: As a Q-Rapids researcher, I

want basic metrics from the Q-Rapids quality model to be computed from the data gathered

during data ingestion, so that metrics can be available for data analysis approaches.

o Motivation: During data ingestion, we are gathering data as provided and structured by

the data producers. However, it is necessary to transform such data into

«ProductFactor»

Stability
«ProductFactor»

Validation

completeness

«Metric»

Number of crashes

«Metric»

Number of non-

blocking exceptions

«DataSource»

Issue tracking tool

(e.g., Mantis,

Redmine)

«Metric»

Number of

issues/bugs (per type

and per week), e.g.,

slippage by phase

and criticality

«QualityFactor»

Reliability

«Metric»

Mean time between

failures (MTBF)

«DataSource»

Log files

«DataSource»

Network monitoring

tool (e.g., Kibana,

Zabbix, Nagios)

bugs

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 28

metrics/measures of the Q-Rapids quality model. The metrics of the Q-Rapids quality

model will be used by the analysis approaches.

 Storage of basic metrics: As a Q-Rapids researcher, I want the computed basic metrics to be

stored in a suitable format (either relational or NoSQL, e.g., HDFS or HBase), so that we can later

exploit parallelism with Big Data analysis technologies (e.g., Spark or Hadoop).

o Motivation: There are many ways to store the metrics/measures of the Q-Rapids quality

model (see Section 5.2) and its related attributes (see Annex B). In the next phases of the

Q-Rapids project, it is necessary to identify the best way to store this information. This

depends on two factors: the real data from the use cases, and the analysis approaches

selected.

 Combination of metrics from heterogeneous data sources: As a Q-Rapids researcher, I want to

be able to combine metrics from different data sources, so that we can reason about product

factors with more than one data source.

o Motivation: In software development projects, it is often difficult to combine metrics

from different data sources. For instance, it is difficult to know which commits belong to

a certain task, or to have in the same place bugs information from both logs and issue

tracking systems. Due to the project’s goal to integrate heterogeneous data sources, it is

important to enable combinability of metrics coming from different sources.

5.3.2 Data analysis approaches
The following user stories summarize the main data analysis approaches:

 Aggregation of basic metrics into product factors: As a Q-Rapids researcher, I want the

computed basic metrics to be stored in a way that they can be easily grouped or aggregated into

product factors (following the Quamoco hierarchy), so that we can build a quality model from

the basic measures.

o Motivation: During analysis, it should be possible to aggregate basic metrics into product

factors (e.g., aggregating cyclomatic complexity and comments density metrics into the

analysability product factor, see Figure 10). For this purpose, product factors should be

defined, and each metric should have a specified weight over the product factor.

 Aggregation of product factors into quality factors: As a Q-Rapids researcher, I want product

factors to be stored in a way that they can be easily grouped or aggregated into quality factors

(following the Quamoco hierarchy), so that we can build a quality model from the product

factors.

o Motivation: During analysis, it should be possible to aggregate product factors into

quality factors (for example, aggregating adaptability and analysability product factors

into the maintainability quality factor, see Figure 10). For this purpose, quality factors

from ISO 25010 should be defined, and each product factor should have a specified

weight over the quality factor.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 29

Figure 10. Example of aggregation of metrics into product factors, and product factors into quality factors.

 Utility functions for proposing candidate quality requirements: As a Q-Rapids researcher, I want

to be able to define utility functions to model the preferences of decision makers with respect

to the measures defined for the factors, so that we can analyse when a basic metric has exceeded

a defined threshold.

o Motivation: As defined in Quamoco, the evaluation step requires defining utility

functions for modeling the preferences of decision makers with respect to the measures

defined for the factors. In Figure 11, we can see examples of utility functions for

cyclomatic complexity, comments density and maintainability. Specifically, this is useful

for seeing the current state of maintainability (which could be a quality requirement). In

a normalised value from 0 to 1, we can see that maintainability has a current value of

0.44. For instance, if our target is to have maintainability at its best value (meaning

greater than 0.92), we could create an alert that maintainability of the product should

be improved considering the cyclomatic complexity and comments density metrics. This

could be an initial example of a candidate quality requirement.

Figure 11. Example of utility functions for assessing the “maintainability” quality factor.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 30

 Relevant metrics for product/quality factors: As a Q-Rapids researcher, I want to be able to

perform analysis approaches to identify relevant metrics for predicting quality factors, so that

we can rely on the most relevant metrics.

o Motivation: There are two types of quality factor metrics: direct and indirect metrics. On

the one hand, direct metrics refer to metrics directly measuring a quality factor, such as

the time invested in maintenance tasks, which is a direct metric for maintainability. On

the other hand, indirect metrics are correlated to a quality factor but do not directly

measure it; for instance, a design structure matrix is a good indirect metric for

maintainability (since it expresses an important characteristic of maintainability:

modularity). In Q-Rapids, we have plenty of indirect metrics for quality factors.

Therefore, it would be useful to apply analysis approaches to see the subset of relevant

metrics for quality factors. To do so, we could just focus on a subset of metrics. The

following analysis approaches are examples for conducting this type of analysis:

correlation analysis (e.g., t-test, p-value); principal component analysis (PCA); F-

measure; generalized cross-validation criterion (GCV); multivariate analysis; multiple

linear regression (MLR); ANOVA; multilinear regression analysis; Pearson’s correlation

coefficient (PCC); logistic regression analysis correlations; R2; and Spearman rank

correlation.

 Prediction of future values of basic metrics: As a Q-Rapids researcher, I want to be able to

perform analysis approaches to predict the value of basic metrics in different contexts (i.e., with

or without the consideration of candidate quality requirements), so that managers can see the

benefits of prioritising a quality requirement in the product backlog.

o Motivation: In future phases of Q-Rapids in which we will have historical data about the

use cases, it will be useful to apply analysis approaches to predict the future value of

basic metrics under different actions taken during software development (e.g., adding a

new functionality vs. addressing a quality requirement).

6. Results of Data Gathering and Analysis: Overview
This section aims to present the advances on the implementation of the user stories from Section 5. In the

D1.2 (Section 3), we reported the progress on the implementation by M15 on the user stories. However, we

consider relevant to report here research activities performed about “open” user stories. This activities will

guide future implementation activities:

 Combination of metrics from heterogeneous data sources: Section 6.1 and Section 6.2.1.

 Relevant metrics for product/quality factors: Section 6.2.2.

 Prediction of future values of basic metrics: Section 6.2.3.

Prediction of future values of basic metrics

6.1 Q-Rapids Quality Model by M18
Table 7 shows all the elements of the Q-Rapids quality model (M18): quality aspects, product and process

factors, assessed metrics, and raw data. Next, we further explain several product and process factors for the

maintainability, reliability, functional suitability, and productivity quality aspects. The first three quality

aspects are from ISO 25010 and refer to the quality of the software system. The fourth quality aspect refers

to the productivity of the software development process.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 31

Table 7. Q-Rapids quality model.

QAa Factor c Assessed
Metric c

Description Raw Data Data
Source

m
ai

n
ta

in
ab

ili
ty

Code Quality Non-complex
files b

Files under the threshold of
cyclomatic complexity (10 by
default)

Cyclomatic complexity per
function of each file, total
number of files

SonarQube

Commented
files b

Files whose comment
density is out of the defined
thresholds (by default 10%-
30%)

Density of comments lines and
lines of code per each file

SonarQube

Absence of
duplications b

Files under the duplicated
lines percentage threshold

Duplicated lines and lines of code
per each file

SonarQube

Blocking
Code

Fulfilment of
critical/blocker
quality rules b

Files without critical or
blocker quality rules
violations

Number of quality rules
violations per file and their
severity (blocker, critical, major,
minor, info) and type (code smell,
bug, vulnerability)

SonarQube,
Coverity,
CodeSonar

Highly changed
files

Unstable files that have been
highly changed in the last
commits

Per each commit: files changed,
lines of code
added/modified/deleted, author,
and revision

SVN, git,
Gerrit

re
lia

b
ili

ty

Testing
Status

Passed tests b Unit test success density Number of unit tests’ errors,
failures, skipped, and total

Jenkins,
GitLab

Test Coverage Tests with an appropriate
coverage

Condition coverage and line
coverage per unit test

Jenkins
(JaCoCo
plugin),
SonarQube

Testing
Performance

Fast tests’
builds b

Tests’ builds under the
threshold of duration

Duration of unit test execution Jenkins,
GitLab

Software
Stability

Ratio of
open/in
progress bugs b

Ratio of open issues of type
bug with respect to the total
number of issues in a
customized time frame

Total number of issues (a.k.a.
tasks) per status (e.g., open,
done), type (e.g., bug,
maintenance, feature), and
timeframe (e.g., current/last
month or current/last sprint)

Jira, GitLab,
Redmine,
Mantis

Errors at
runtime

Occurrence of critical errors
at runtime at the end user
site

All tracks of logs, including type
of error (fatal, error, warning,
info, debug, trace), file and line
where in occurred, and error
message

Logs

Availability
Uptime

Percentage of time that the
product is accessible

Timestamp in which the system
is not available and derived
metrics, e.g., Availability Uptime,
Mean time between failures

Zabbix,
Nagios

fu
n

ct
io

n
al

su
it

ab
ili

ty
 Software

Usage
Features Usage Appropriateness of the

features included in the
software product regarding
to their usage

Per each functionality (or
feature): number of times used,
average usage time

Logs,
monitoring
plugin

p
ro

d
u

ct
iv

it
y

Issues’
velocity

Resolved issues
assigned to a
date

Resolved issues assigned to a
date (simple date, iteration,
or release)

Per each issue (a.k.a. tasks):
created time, status, updated
time, iteration(s), release(s).

Jira, GitLab,
Redmine,
Mantis

Issues
completely
specified b

Density of incomplete issues
in a timeframe

Fields of each issue (e.g.,
description, due date, assignee,
estimated time)

Jira, GitLab,
Redmine,
Mantis

a. QA (Quality Aspect). b. The assessed metrics indicated with a ‘b’ were implemented in the quality model and evaluated in January 2018. The other identified assessed
metrics from the workshops are not yet implemented. c. Each assessed metric can be classified in more than one product or process factor. In the same way, each

product and process factor could be classified in more than one QA.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 32

Besides, based on the software quality workshops for process metrics (see D2.2) and a preliminary study on

the feasibility to measure those metrics, the following elements of the quality model have been identified

and will be implemented. Please note that as process factors are highly context dependent, these process

factors are company-specific; that is, not all of them will be implemented in all UCs, but depending on each

UC’s specific needs (see D2.2 for more details). We are working on validating these assessed metrics with the

UCs and updates will be provided in D2.2 at M24.

Table 8. Q-Rapids quality model: further process metrics

QAa Process
Factor c

Assessed
Metric c

Description Raw Data Data
Source

p
ro

d
u

ct
iv

it
y

Issues’
Velocity

Issue
Throughput

Average time it takes to
implement an issue

Duration for each issue with
resolved status, in timeframe
(e.g. sprint, week, month), and
total issues

Jira, Mantis,
GitLab

Status-Issue in
a timeframe

Density of issues with a
particular status within a
defined timeframe

Total number of issues with
status (e.g. open, closed,
resolved, tested, work in
progress), in timeframe (sprint,
week, month), and total issues

Jira, Mantis,
GitLab

Team
Throughput

Quantum of story points
completed during the last
completed sprint

Total number of issues (a.k.a.
story points) with status
resolved/completed, in
timeframe of last sprint, and
total issues

Jira

Delivery
Performanceb

Timely release
delivery

Percentage of releases
delivered on time in a period

Total on-time releases delivered
in timeframe (month, year), and
total releases

Mantis

Timely feature
delivery

Percentage of features
delivered on time during
development cycle

Total on-time features
delivered in timeframe of a
development cycle, and total
features

Core
component
commits

Number of commit on core
component in a period before
the planned release

Number of commits on
“metamodel.bpmn” and
“diagram.editor.bpmn”
components in timeframe
(week, month)

Development
Speed

Daily build
performance

Average daily build pass
through time

For every build, build duration
and automated test duration,
and total

Jenkins,
Atlassian,
Stash

Automation
speed

Average speed of automated
test

Timestamp for each commit
when fully tested and when it
goes for testing, and total

Commit review
speed

Average commit review speed
for a period

Timestamp for each commit
when it is up for review and
when it is reviewed, and total

fu
n

ci
o

n
al

su
it

ab
ilt

iy
 External

Quality
End user
feedback

Feedback frequency from
end-users related to issues in
a period

Total number of issues posted
after a support call or a post in
forum in a timeframe (week,
month)

Mantis

a.QA (Quality Aspect). b This process factor was identified as ‘on-time delivery’ during the GQM workshops (see D2.2) but has been renamed as ‘delivery performance’. c.

Each assessed metric can be classified in more than one product or process factor. In the same way, each product and process factor could be classified in more than one

QA.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 33

6.2 Results on Data Analysis by M18

6.2.1 Using the Quality Model: Quality Alerts and Raw Data Visualization
As shown in Figure 12, the three most abstract levels (quality aspects, product factors, and assessed metrics)

work as “traffic lights”, with a normalised value between 0 and 1 and customised thresholds to fulfil. Hence,

the users of the Q-Rapids quality model can customise when to raise quality alerts. On the other hand, when

a quality alert is raised, stakeholders can explore the raw data looking for the problem and taking a decision.

Figure 12. Example of utility functions to assess the “maintainability” quality aspect (adapted from Quamoco).

In this subsection, we give a couple of examples of how to use our quality model with respect to the

maintainability and reliability quality factors:

A company has to improve the maintainability for one of their high quality products. Taking up the quality

model, the quality aspect maintainability is composed of two product factors: code quality and blocking code.

In this company, Bob, a quality manager, decides to use the Q-Rapids tool to manage maintainability

problems. He installs the tool and the quality model does not raise any alert. However, at the beginning of

the next cycle, Bob receives an alert because the maintainability bell is ringing. He sees in the tool that the

maintainability traffic light has moved from green to orange. He calls for a meeting with Jane, a senior

developer. Together, they go deeper in the quality model to analyse the situation in depth. Although code

quality is green, blocking code appears as red. They explore further the assessed metrics and raw data of

highly changed files and fulfilment of critical/blocker quality rules. They identify that in the last cycle, the

classes of a directory were changed many times by a single developer. Moreover, the classes contained five

blocker quality rules violations about code smells. The quality model is offering actionable analytics to

refactor the classes of the problematic directory, clearly indicating which classes have been heavily modified

and the explanation of the violated quality rules. They take action and add a new issue in the backlog so that

the author can solve those problems and not accumulate technical debt.

A
 B

o
tto

m
-U

p
 A

p
p

ro
a

c
h

U2(M3/M4) = 0.4

Maintainability

Blocking CodeCode Quality

AM2: Non-complex
files

AM1: Commented
files

w = 0.41 w = 0.59

Static Sw. Code
Analysis from

SonarQube

U1(M1) = 0.5

Value = 0.26

M3: Cyclomatic
complexity of a file

M2: Total number
of files

Absence of
duplications

10.0

1 .0

0 .0

U
ti
li
ty

U
2

0.0 20.0

v eto

0.4

6.0

Avg. cyclomatic complexity per function

1.0

0.0
1.0

U
ti
lit

y

Comments density

0.0 3.02.0

0.5 M4: Number of
functions of a file

M1: Density of
comments of a file

w = 0.19 w = 0.46 w = 0.35

Assessed
Metric

Quality
Aspect

Data Source

Product/
Process

Factor

Legend

Raw Data

U
1

M1 M3/M4

…

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 34

Figure 13. Example of actionable analytics for the “fulfilment of critical/blocker quality rules” assessed metric. It shows the issues
divided by severity and normalized by lines code. Besides, a list of blocker and critical issues that Q-Rapids suggest to take care of.

Another example. At the end of the last cycle, a new release of the product was launched. Unfortunately,

during the current cycle the traffic light of reliability suddenly go to red and the alarm bell is ringing. Bob’s Q-

Rapids quality model shows an orange colour for testing status and red for software stability. He calls for an

immediate meeting with Jane. Together, they recognize that the problem is related to errors at runtime. Jane

further explores the raw data from logs, and realised many critical errors (e.g., 5xx errors) caused by one

module. Therefore, immediate action is required to solve the crashes and exceptions identified at the client

side. Using further drill-down, Jane is able to identify the exact line of code responsible for the mess and

informs her team to work on the issue. Going further, Jane realises that the test coverage of such module

was worse than average. Therefore, the product owner could identify it and include it in the product backlog

with a lower priority. The errors at runtime metric is recovered within one hour whereas the test coverage

gets a stable desired value in the next days.

Figure 14. Example of actionable analytics for the “ratio of open/in progress bugs” assessed metric. It shows the ratio of bugs with
respect other issues types, the percentage of resolved issues that are bugs, and a list of open high&highest priority bugs that Q-

Rapids suggest to take care of.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 35

6.2.2 Data Correlation
We say that two sets of values are correlated with each other whenever these proportionally decrease or

increase together. The correlation could be negative as well. This means that one value will increase

whenever the other one will decrease (and vice versa).

For the sake of a simplicity, let us call these sets of values as signals. Moreover, let us assume that the order

of values in that sets matters. The most common way to measure the correlation level between two signals

y1 and y2 is to use following formula:

𝑐𝑜𝑟𝑟(𝑦 , 𝑦)
𝑐𝑜𝑣(𝑦 , 𝑦)

𝜎 𝜎

where 𝜎 and 𝜎 indicate standard deviation of 𝑦 and 𝑦 signal respectively and 𝑐𝑜𝑣(𝑦 , 𝑦) indicates the

covariance between 𝑦 and 𝑦 and can be calculated used the following formula:

𝑐𝑜𝑣(𝑦 , 𝑦)

𝑁
∑(𝑦

()
− 𝜇)

𝑁

(𝑦
()
− 𝜇)

where N indicates the number of samples, 𝜇 and 𝜇 the mean values of signal 𝑦 and 𝑦 . Finally, the standard

deviations and the means can be obtained using the following formulas:

𝜎𝑘 √

𝑁
∑(𝑦𝑘

() − 𝜇𝑘)

𝑁

𝜇𝑘

𝑁
∑𝑦𝑘

()

𝑁

Usually, it makes more sense to correlate two signals that are shifted with respect to each other’s. This allows

investigating the correlation of current signal’s values with historical ones. More precisely, we can introduce

additional parameter s in the corr function formula:

𝑐𝑜𝑟𝑟(𝑦 , 𝑦 , 𝑠)

𝑁
 (𝑦

() − 𝜇)
𝑁
 (𝑦

(−𝑠) − 𝜇)

𝜎 𝜎

Using the presented above approach we can investigate whenever pairwise correlations appear in the

collected data. Some examples of hypotheses could be as follows:

1. Increasing size of sprint backlog (number of development tasks planned for a sprint) correlates with
the increasing cognitive complexity and amount of duplicated lines (e.g. as the result of work under
the time pressure),

2. Increasing amount of duplicated code correlates with the increasing number of defects (bugs).
3. Increasing complexity of code correlates with the increasing number of defects (bugs).
4. Increasing size of sprint backlog (number of development tasks planed for a sprint) correlates with

the number of delayed tasks.
In Fig. 1, we have presented the correlograms indicating how backlog size correlates with the number of

duplicated lines (upper left diagram) and number of delayed tasks (upper right). The lag on x-axes indicates

the shift parameters (development days). From the figures below we can observe that there are some bars

that are above the statistical significance thresholds. In other words, approx. 7 days after (~ 1 sprint) the

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 36

team was overloaded (with tasks in the backlog) we will observe the degradation of code quality. In that case

the increased number of duplicated lines increased.

A bit strange-looking could be the negative correlation of backlog size vs. duplicated lines at lag 0. But it must

be noticed that it is the consequence of falling number of tasks in the backlog after the significant peak on

Feb-10.

Figure 15 Correlograms backlog size vs. the number of duplicated lines (upper row) and the backlog size vs number of delayed
tasks. The blue dashed lines indicate statistical significance thresholds. Bottom row shows the correlated series (backlog size on the

left and duplicated lines density on the right).

We have consulted this with the use case provider. We have learnt that this situation was quite specific to

the analyzed project. First of all, the team was adapting a new technology framework, and as a result

sometimes it was difficult for them to precisely estimate the time needed to deliver planed tasks.

Future perspective on integration

The presented statistical tool is basic and important while finding relations between two variables. We do
not foresee major obstacles that will impede current approach adapted for data gathering. We can consider
two options for integration (to be checked in the future):

 Implementing correlation using scripted fields, so that the correlation for a given lag would be
returned within a single Elasticsearch query.

 Using similar data processing pattern that is used by QR-EVAL for quality factors calculations.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 37

6.2.3 Time Series Analysis and Prediction

Time Series Analysis

Time series analysis can be defined as the decomposition of a given 𝑦(𝑡) signal into a trend 𝑇(𝑡) a seasonal

component 𝑆(𝑡) and the residual component 𝑒(𝑡). An example is shown in Fig. 2.

Figure 16 Example of signal 𝑦(𝑡) (data) decomposition into seasonal fluctuation, trend, and the reminder.

One of the most commonly used ways to obtain the trend of a signal 𝑦(𝑡) is to use the linear filter such as

moving average:

𝑇(𝑡)

𝑎 +
∑𝑦(𝑡−)
𝑎

 0

An example of two moving averages has been shown in Fig. 3. In general, the bigger the value a, the smoother

the filtered signal is.

Figure 17 Examples of moving averages (blue and green) for a signal X.

Having the trend, we can subtract it from the original signal to obtain the residuals (remainder and the
seasonal component). The seasonal component could be problematic as it may obscure the signal that we
want to model and forecast. Usually, the seasonality is the phenomenon that repeats over time (e.g. daily,
monthly, yearly). In software development, the seasonality may be caused by the plan of releases of new

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 38

versions of software or milestones of the project. Once we identify the seasonality we can model it.
Afterward, the model of seasonality can be removed from the analyzed signal (it is often called Seasonal
Adjustment or Deseasonalizing). An example of seasonality can be observed in Fig.4, which indicates the
average number of completed tasks. Here we observed seasonality at the level of sprints. In the analyzed
example the developers usually completed the task at the end of a sprint. Therefore, this can explain the
periodic peaks.

Figure 18 Seasonality in the average (per developer) number of completed tasks.

In order to accurately model the time series, the seasonality has to be subtracted. It can be achieved using a
variety of approaches. The curve fitting or differentiating are some of them. As these procedures are usually
seamlessly embedded in the frameworks for time series modeling we will avoid describing them in detail
here.

Time Series Prediction

The time series are modelled in order to use that model for prediction purposes. In other words, the model

is built using the training data in order to produce some forecast on unknown data. The general idea is shown

in Fig.5. The training data is indicated by green colour.

Figure 19 Example of prediction idea

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 39

The data is used to obtain the model parameters. Having the measurement for today (indicated as Now) we
can produce a forecast for upcoming days (red circles indicated as ‘x day ahead prediction’). Usually the
prediction is subjected to some prediction error. Therefore, we need to define some uncertainty levels for
prediction (the blue lines). In fact, for the presented example the blue lines indicate the 95% confidence
thresholds, meaning that we have 95% chances that the predicted value will fall between the blue lines. As
we can see the confidence levels are getting wider as we want to look further into the future.

As for the modelling, there are a variety of approaches. The most well-known are: exponential smoothing,

Holt-Winters, and ARIMA (Autoregressive Integrated Moving Average). The exponential smoothing predicts

the next value of a given time series using a geometric weighted sum of a past data samples.

𝑦(𝑟+) 𝛼𝑦(𝑟) + 𝛼(− 𝛼)𝑦(𝑟−) + 𝛼(− 𝛼) 𝑦(𝑟−) +⋯

However, the exponential smoothing model should only be used with signals that have not systematic trend
and seasonal components. These can be subtracted using the approaches mentioned above. However, to
avoid doing this manually the Holt-Winters model can be used directly. The model has three soothing
parameters, namely 𝛼 (for the constant level value), 𝛽 (for the trend), and 𝛾 (for seasonal variations). Before
we introduce some results of prediction, we would like to shortly introduce the third kind of model, namely
the ARIMA.

The ARIMA states for Autoregressive Integrated Moving Average. The model is commonly denoted as
ARIMA(p,d,q) where parameters p, d, and q are non-negative integers, that control three main components
of the model: (i) the order (number of time lags) of the autoregressive model, (ii) the degree of differencing,
and (iii) the order of the moving-average. The ARIMA models are defined for stationary time series (those
which statistical properties such as mean, variance, and autocorrelation are constant over time). In order to
obtain it, the non-stationary time series have to be differentiated until non-stationarity is eliminated. The
number of differencing iterations corresponds to d parameter of the model. In order to choose other two
parameters (p and q) we must analyze autocorrelation diagram (ACF) and partial autocorrelation diagram
(PACF) of the analyzed signal. From the diagram shown in Fig.6, we may conclude that p will be 0, because
ACF function drops below significance threshold (dashed line) after lag 0. Similarly, we can estimate q=0 value
using PACF diagram.

Figure 20 ACF and PACF diagrams.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 40

The predictions using different models can be slightly different in terms of the forecasts values and the
confidence thresholds (example is shown in Fig. 7).

Figure 21 Forecasts and confidence thresholds for Holt-Winters and ARIMA models.

Nonetheless, these the accuracy of predictions can be assessed using the evaluation data. An example of
prediction drawn on top of the true signal and the absolute values of differences are shown in Fig. 8.

Figure 22. Prediction vs. true signal (left) and the absolute differences (right).

Looking at the distribution of errors (Fig. 9), it can be noticed that for the analyzed example (prediction of

the number of issues for the next day) the majority of errors are less than 2.

Figure 23 Distribution of errors.

Future perspective on integration

The presented tools for time series modelling and predictions can be easily integrated with the current
version of data gathering and the analysis framework. There plenty of JAVA libraries45 that can be integrated
with the Elasticsearch in the same manner as QR-EVAL component.

4 https://github.com/signaflo/java-timeseries
5 https://github.com/Workday/timeseries-forecast

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 41

7. Specification of the Data Gathering and Analysis Architecture

7.1 The initial specification (M6)
This section describes the high-level data gathering and analysis architecture to be realized in Q-Rapids. The

architecture shall provide flexible and extensible means:

 To collect all necessary information from various data sources such as software systems, log files and

integration frameworks.

 To realize the analysis functionality needed to support quality-aware strategic decision making.

The architecture (see Figure 24) will take up the idea of the lambda architecture approach used for Big Data

solutions. This is also in line with the integration of Q-Rapids, as reported in Deliverable 4.2. The data

gathering and analysis architecture of Q-Rapids will be composed of three main layers:

1. The data ingestion layer will be responsible for integrating all necessary data and information from

the outside (i.e., external data producers) into the Q-Rapids tool;

2. the data storage layer will be responsible for data persistence, and,

3. the data processing layer will transform and analyse data (batch and streaming).

Figure 24. Q-Rapids adjusted lambda architecture.

For all three layers, a number of frameworks might be used to ease the development of functionalities related

to Q-Rapids. For instance, Apache Kafka and Camel can be used for data ingestion. For data storage, different

approaches could be used depending on the analysis approaches used, such as Hadoop HDFS or relations

databases. In the case of data processing/analysis, Spark could be used. Within each layer, different

frameworks might even be used in parallel if specific requirements demand specialised frameworks.

However, it is intended to rely only on a small set of these tools to reduce the overall number of dependencies

on software libraries and to be able to deploy the Q-Rapids platform even on commodity hardware. Finally,

the reporting/analytics frontend of Figure 24 refers to the dashboard of WP3.

Data Inges tion

Data Storage

Data Proces s ing

Staging

Cluster

Spark
Streaming

MLLib GraphX SparkR
Blink
DB

Spark
SQL

API
RDBMS DW

Reporting/Analytics
Frontend

Data Producers
(Bulk+Streaming)

Plugin

Plugin

Plugin

Plugin

Plugin

Plugin

Pronto

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 42

The final selection and specification of the frameworks to be used in the data storage and analysis layers will

be performed in the next phases of Q-Rapids. The reason is that we will see the real data from the use cases

in the proof-of-concept phase. Section 7.1.1 describes the ingestion layer and its possible frameworks.

7.1.1 The ingestion layer
To make use of data from various software systems, the ingestion layer is the communication channel to the

Q-Rapids platform (Figure 25). It has to be able to deal with a probably large volume of data (e.g., by capturing

runtime information with high velocity) as well as with a large

variety of different data structures and formats produced by the

diverse data sources.

Therefore, the main goal of the ingestion layer is to connect the

software systems (data flow sources) and the Q-Rapids platform

(data flow target). According to software engineering best

practices, the connecting of systems should be decoupled as much

as possible in order to keep the involved systems and their

components autonomous from each other. If we rely only on low-

level API calls, the maintainability of the overall system would

severely suffer over time and the technical debt would increase.

For instance, this might be the case if new requirements emerge

regarding the data to be collected, if API calls change with new

releases, or if new software systems to be connected to the platform demand changes in the existing API on

the Q-Rapids platform (and then probably also in several data sources).

The proposed ingestion layer for the Q-Rapids platform, therefore proposes making use of existing publish-

subscribe messaging frameworks to connect the data sources to the platform in a decoupled fashion. Each

data source (software system) locally realises the required data extraction functionality (e.g., by realising a

plugin for the system) and sends the extracted data to an appropriate topic handled by the messaging system.

A component which is interested in that data (e.g., components in the data storage layer or in the analysis

layer) subscribes to the topic and gets informed whenever new data is available. The same publish-subscribe

concept can be used to realise a back channel from the Q-Rapids platform back to the software systems (e.g.,

to ask for more details upon demand, to provide valuable quality information back to a developer, etc.).

Independent of this publish-subscribe approach, the ingestion layer might still use direct API calls whenever

needed or more appropriate. For instance, it would not make much sense to load all data from a software

repository into the platform (i.e., to make a shadow drive within the storage layer) just to have all data within

the platform. Instead, when quality-related data flowing from a repository to the platform (e.g., the number

of classes changed, the LOC changed in a class) is not sufficient and the analysis or recommendation

components need more information (e.g. information about severe control flow changes within the changed

classes), then the data gathering could still use direct API calls to extract that kind of additional information

from the repository directly.

Figure 25: Abstract view on data ingestion.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 43

Because the ingestion layer is likely to have to deal with large amounts of data and/or with data generated

with great velocity, a publish-subscribe framework like Apache Kafka™ capable of handling high quantities of

data is needed. Apache Kafka6™ is a well-known framework used for building real-time data pipelines and

streaming apps. It is horizontally scalable,

fault-tolerant and very fast, and is already

used by many companies. Kafka is run as

a cluster on one or more servers to store

streams of records in categories called

topics. Each record consists of a key, a

value and a timestamp.

Kafka has four core APIs (see Figure 26):

The Producer API7 allows an application to

publish a stream of data objects to several

Kafka topics. The Consumer API8 allows an

application to subscribe to these topics to

get informed about new data arriving in

this topic in order to process that stream

of data objects. The Streams API9 allows

an application to act as a processor for

streams of data objects, i.e. it consumes

an input stream from topics and produces

output streams to other topics, effectively transforming the input streams into output streams. So, to realise

necessary data transformations when data is flowing from the data sources into Q-Rapids components of the

data storage or data analysis layer, the Streams API could be used to delegate the transformations to the

ingestion layer if appropriate. Still, each plugin at a data source might perform such transformations on its

own before sending it to Kafka. However, using the Streams API would be more efficient if there are different

data sources with common transformation requirements. The Connector API10 allows building and running

reusable producers or consumers that connect Kafka topics to existing applications or data systems. For

example, a connector to a relational database might capture every change to a table.

Kafka Connect (a component of open-source Apache Kafka) is a framework for scalable and reliable Kafka

connections with external systems such as databases, key-value stores, search indexes and file systems. It

makes it easy to quickly define connectors that move large data sets into and out of Kafka. Source Connectors

import data from another system (e.g., a relational database into Kafka) and Sink Connectors export data

(e.g., the contents of a Kafka topic to an HDFS file). So, Kafka Connect can ingest entire databases or collect

metrics from application servers into Kafka topics, making the data available for stream processing with low

latency. An export connector can deliver data from Kafka topics to external systems like the Q-Rapids data

storage layer (e.g., into HDFS, MySQL, etc.) or the Q-Rapids analysis layer (e.g., into Apache Spark for analysis,

or into Solr or Elasticsearch to realise fast search capabilities). There exist Kafka Connectors11 for databases

6 https://kafka.apache.org/documentation.html
7 https://kafka.apache.org/documentation.html#producerapi
8 https://kafka.apache.org/documentation.html#consumerapi
9 https://kafka.apache.org/documentation/streams
10 https://kafka.apache.org/documentation.html#connect
11 https://www.confluent.io/product/connectors/

Figure 26: Main parts of Apache Kafka.

https://kafka.apache.org/documentation.html
https://kafka.apache.org/documentation.html#producerapi
https://kafka.apache.org/documentation.html#consumerapi
https://kafka.apache.org/documentation/streams
https://kafka.apache.org/documentation.html#connect

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 44

(e.g., using JDBC-Connector) as well as other systems like Jenkins12 for collecting information about build and

deployment processes.

Apache Kafka™ is a scalable, reliable and fast framework for realising the ingestion layer of the Q-Rapids

platform and making use of data collected from different software systems. But the number of existing Kafka

Connectors is limited. So, before spending effort on realising a new Kafka Connector to connect a software

system, one might use Apache CamelTM13 connectors instead. Camel is less scalable and efficient than Kafka

and should not be used for large and/or fast data flows, but it provides a lot of out-of-the box components

to connect software systems with each other, and it already has a connection component for connecting to

Kafka.

Camel realises many Enterprise

Integration Patterns (EIP)14 based on

design patterns from asynchronous

messaging systems. This is realised by

defining data flow routes between the

connection endpoints of Camel

components. Camel Components

provide uniform Connection

Endpoints for the data flow routes,

and the data flow can be controlled

using Camel Processors just like using

the Producer and Consumer API of

Kafka (e.g., to perform data

transformation, to apply data

anonymization, etc.). The principle

architecture of Apache Camel is

shown in Figure 27. There are Camel

Components for HDFS, AWS, Hbase,

Cassandra, Spark, File, LDAP, JDBC,

(S)FTP, FTPS,HTTP, Rest, ActiveMQ,

Kafka, Netty, RMI, JMS, DOCKER,

Servlet, DropBox, Gmail, GIT, Github, JIRA, GoogleDrive and others.

7.1.2 Initial tools to be integrated into Q-Rapids for the proof-of-concept.
We will select a subset of the following data sources for the proof-of-concept phase (for the most relevant

data sources used by the industry partners, see the data producers in Figure 24). The remaining data sources

will be handled in future phases of the project.

The common data sources used by all partners are SonarQube, Jenkins, the code repositories of the partner

(e.g., SVN, Git, GitLab) and the issue tracking tool of the partner (e.g., Redmine, GitLab, JIRA, Mantis). Besides,

there are optional data sources (in some cases such sources exist, but there are confidentiality issues), such

as log files from software used at runtime, network monitoring tools (e.g., Kibana, Zabbios, Nagios) and other

continuous integration tools of the partner in addition to Jenkins.

12 https://github.com/yaravind/kafka-connect-jenkins
13 http://camel.apache.org/
14 http://camel.apache.org/enterprise-integration-patterns.html

Figure 27: Apache Camel architecture.

https://github.com/yaravind/kafka-connect-jenkins
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 45

7.2 Lessons learned and current data gathering and analysis specification (M18)
From M6, the architecture specification presented in Figure 24 has become more mature. Further decisions

for the data ingestion and storage layers have been performed and deployed in the use cases. Lessons

learned are reported in D1.2. We briefly summarize next the current specification of the Q-Rapids

architecture with respect to WP1. Figure 28 shows a current high-level architecture view depicting the

modules of the Q-Rapids tool and the data flow. It takes over the idea of the lambda architecture approach

used for Big Data solutions. The red part, composed of four layers, is related to the Q-Rapids quality model.

Figure 28. Q-Rapids adjusted lambda architecture at M18. See evolution with respect to Figure 24.

First, the data producers layer consists of external heterogeneous data sources with information about

software quality. Currently, the Q-Rapids tool supports data gathering from static code analysis (e.g.,

SonarQube), executed tests during development (e.g., Jenkins), code repositories (e.g., SVN, Git, GitLab), and

issue tracking tools (e.g., Redmine, GitLab, JIRA, Mantis).

Second, the data ingestion layer consists of several Apache Kafka connectors to gather data from data

producers. These connectors query the API of data producers to ingest the data into Kafka. For instance, the

Jira connector reads all the features from each issue (e.g., description, assignee, due date) from the JSON

document got from the Jira API. Apache Kafka is a Big Data technology serving as primary ingestion layer and

messaging platform, and offering scalability via clusters capabilities.

Third, the data distributed sink layer is used for data storage, indexing and analysis purposes. Both the raw

data (i.e., collected data of different RSD cycles) and the quality model assessment (i.e., aggregations) are

stored in a search engine, called Elasticsearch. This allows to define four types of indexes, three for the most

abstract elements of the quality model (quality aspects, product and process factors, and metrics), and the

fourth for the raw data. As Apache Kafka, it offers scalability via cluster capabilities, which is required when

storing huge amounts of data. Besides, we have selected the Elastic stack, due to its capability to quickly

perform aggregations, which becomes fundamental for the different levels of the quality model.

Fourth, the data analysis and processing layer performs the quality model assessment. The execution of the

quality model assessment is performed by querying the distributed data sink, and applying the utility

functions in properties files. This is highly customizable for each use case needs. For instance, the Q-Rapids

tool users can set up the quality model (utility functions, weight of product factors, and so on), and the

frequency in which the quality model assessment is executed (e.g., daily, hourly).

Inside the Q-Rapids project, WP3 is working on an additional layer with a dashboard, which is relevant for

the Q-Rapids tool, but out-of-scope in this document.

Data Ingestion

Analyst
Decision
Maker

Data Producers
(Bulk+Streaming)

Dashboard

Q-Rapids Tool

Distributed Data Sink

Data Analysis and
Processing

QR-Eval

Elasticsearch

Data Gathering and
Analysis

Kafka Cluster

Strategic
Decision Making

Connector

Connector

Connector

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 46

Conclusion
This deliverable defines:

1. The current “as-is” scenario of the use cases: the identification of available data sources.

2. The “to-be” scenario: data gathering and analysis user stories to make the generic Q-Rapids quality

model operational for the use cases.

3. An architecture including tools and frameworks being used (and that could be used) to collect and

analyse data.

By M18, we have implemented most of the elicited user stories. By means of implementing the proposed

architecture, we enabled gathering and analysing the data of the Q-Rapids quality model during the previous

phase (“proof-of-concept” from month 7 to month 15).

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 47

References
[1] M. Galster, P. Avgeriou, Empirically-grounded reference architectures: a proposal, in: Qual. Softw.

Archit., ACM, New York, NY, USA, 2011: pp. 153–157. doi:10.1145/2000259.2000285.

[2] E.Y. Nakagawa, M. Guessi, J.C. Maldonado, D. Feitosa, F. Oquendo, Consolidating a Process for the
Design, Representation, and Evaluation of Reference Architectures, in: IEEE/IFIP Conf. Softw. Archit.,
IEEE, 2014: pp. 143–152. doi:10.1109/WICSA.2014.25.

[3] V. Basili, A. Trendowicz, M. Kowalczyk, J. Heidrich, C. Seaman, J. Münch, D. Rombach, Aligning
Organizations Through Measurement - The GQM+Strategies Approach, (2014) 205. doi:10.1007/978-
3-319-05047-8.

[4] S. Wagner, A. Goeb, L. Heinemann, M. Kläs, C. Lampasona, K. Lochmann, A. Mayr, R. Plösch, A. Seidl,
J. Streit, A. Trendowicz, Operationalised product quality models and assessment: The Quamoco
approach, Inf. Softw. Technol. 62 (2015) 101–123. doi:10.1016/j.infsof.2015.02.009.

[5] V.R. Basili, G. Caldiera, H.D. Rombach, The Goal Question Metric Approach, in: Encycl. Softw. Eng.,
Wiley, 1994.

[6] D. Zhang, S. Han, Y. Dang, J.G. Lou, H. Zhang, T. Xie, Software analytics in practice, IEEE Softw. 30
(2013) 30–37. doi:10.1109/MS.2013.94.

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 48

Annex A – Interview scripts for WP1

WARM-UP INTRODUCTION

 Goal of the Interview

To collect data for the data gathering and analysis of the Q-Rapids project (focusing on the green/right part).

 Structure, related themes, and duration of the interview

This interview has five parts, with three sections with questions about your use case:

 Introduction (5 minutes).

 Section 1: As-is scenario of your use case (20 minutes).

 Section 2: To-be scenario of your use case (15 minutes).

 Section 3: Acceptance and impact of Q-Rapids (15 minutes).

 Wrapping up (5 minutes).

The complete duration is about 1 hour.

 Confidentiality and Sharing the Results

The information that we collect from this interview will be kept confidential. Information about you that will

be collected during the research will be put away and no-one but the Q-Rapids researchers will be able to see

it. Any information about you will have a number on it instead of your name. Only the researchers will know

what your number is. It will not be shared with or given to anyone except the research team introduced at the

beginning of the present document.

Nothing that you tell us will be shared with anybody outside the Q-Rapids project, and nothing will be

attributed to you by name. The knowledge that we get from this research will be shared with you and the other

participants before it is made widely available to the public. Each participant will receive a summary of the

results. The knowledge that we get from doing this research will be published as part of the Deliverables of

the Q-Rapids project. In addition, we will publish the results in order that other interested people may learn

from our research.

Less than

 5
Minutes

Elapsed

 0

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 49

 Recording the Interview

The interview will be recorded (in audio) for later transcription.

 Interviewee information

It is required that the person interviewed has had the role of manager or developer in the use case (or who has

the knowledge to respond as such).

Demographic information

Respondent name

Respondent email

Respondent telephone

Job position in the company

Role in the selected project (i.e., Q-

Rapids use case)

Years of experience in rapid software

development

 Open question

Do you have any question or comment before starting the interview?

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 50

1. As-Is Scenario

We aim to gather information about the current situation of your use case.

As-Is Scenario: Description of the current situation

1.1. Which different data sources and their corresponding (repeatable) technologies do you have at the

company for:

1.1.1. Projects (e.g., planning and effort sheets)?

1.1.2. Development (e.g., code repositories, bug reports)?

1.1.3. System behaviour (e.g., system logs)?

1.1.4. Software usage (e.g., profiling data, performance measures)?

1.1.5. User feedback (e.g. questionnaire, complains, maintainability/change requests)?

1.1.6. Any other important source (not to lose any data)?

1.2. Who is the contact person to get access to these data sources and the corresponding documentation?

(Note: we are looking for IT of the software company).

* Note: this question was done at the end of the interview not to record personal data.

1.3. Do you gather information about the software quality of your systems (at run-time)? If so,

1.3.1. What tools do you use for gathering it?

1.4. Do you analyse the software quality of your systems (at run-time)? If so,

1.4.1. What information (metrics) do you use for analysing quality requirements?

1.4.2. What methods or tools do you use for the analysis of quality requirements?

1.5. To analyse the software quality of your systems, do you integrate heterogeneous data sources at

your company that complement each other? For example, considering several data sources in your

decision making (what tools are used).

As-Is Scenario: Critical analysis of the situation

1.6. What are the main problems/concerns that you have when analysing quality requirements

nowadays?

1.7. What is the impact of these problems on the project and business goals?

Around

 20
Minutes

Elapsed

 5

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 51

2. To-Be Scenario: Future with Q-Rapids

To-Be Scenario: Q-Rapids in your use case

Now, we want to discuss with you your expectations on the Q-Rapids framework for managing quality and

functional requirements in an integrative manner.

Imagine that the Q-Rapids tool is already implemented and helps you assessing the level

of software quality during development and at runtime.

Please, reply only considering your use case.

2.1. What information about actual quality issues (of the software system(s) of the use case) would Q-

Rapids provide you?

2.2. What software metrics (about the software system(s) of the use case) would Q-Rapids provide you?

2.3. Which criteria would you use to evaluate the success of the data gathering and analysis of Q-

Rapids?

To-Be Scenario: Examples in your use case

2.4. Please, give an specific example of your expectation on how Q-Rapids would help to your use case.

Around

 15
Minutes

Elapsed

 25

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 52

3. Acceptance and Impact of Q-Rapids

The impact of Q-Rapids in your use case

We want to identify possible risks of Q-Rapids adoption

3.1. What quality characteristics should have the Q-Rapids tool to be accepted and used in your

company? For example: integration with existing systems (what are those), integration with existing

processes (how do they look like), easy to use, do not need effort from the developers, and

acceptable by workers committee.

3.2. What can hinder the acceptance and use of Q-Rapids?

The impact of Q-Rapids in practice

3.3. Besides your company, do you think that Q-Rapids could be used in other firms?

3.4. In your opinion, what could be the target community of Q-Rapids?

Around

 15
Minutes

Elapsed

 40

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 53

WRAPPING-UP

 Next steps:

o The responses will be validated by the interviewee, who may complete it or even change the

parts that are considered inaccurate or erroneous.

o During the analysis process, we may need to contact the respondent again to ask for more

details on a specific issue.

 Data access questions: How to get documentation of and access to these data sources?

o We are going to contact the people from Question 1.2 to get access to these data sources and

the corresponding documentation. Next steps with these people:

A. Questionnaire:

 Is there any access, privacy, security issue, constraint about the data

sources?

 Is there any documentation about their data structure (e.g., data schema per

data source)?

B. Telephone interview (if necessary).

Less than

 5
Minutes

Elapsed

 55

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 54

Annex B – Data storage: list of valuable attributes
The data storage of the Q-Rapids tool needs to include basic metrics from the Q-Rapids quality model. The

tables below show valuable attributes that need to be saved. It is important to note that the tables below

report the state at M6. However, in the second phase of the project (“proof-of-concept”, months 7-15), we

have defined the data structure based on both the real data from each use case and the selected analysis

approaches. Updated information can be found in the Annex B of the deliverable D1.2.

The tables below indicate relevant attributes, their data type and a description of different topics:

 Version control data, see Table 9.

 Metrics data (vector version), see Table 10.

 Metrics data (single metric version), see Table 11.

 Task data, see Table 12.

 Issue data, see Table 13.

 Duplication data, see Table 14.

 Testing data, see Table 15.

 Usage data, see Table 16.

Crashes and errors data, see

 Table 17.

Table 9. Version Control Data (e.g. SVN, git)

Attribute Datatype Description

systemid STRING System versioned

repository_url STRING Address of repository

repository_type STRING Type of repository (e.g., SVN,
git)

revisionkey STRING (or LONG) commit id

logmessage STRING commit message

Author STRING commit author

timestamp TIMESTAMP datetime of commit

filename STRING changed file

Action STRING add, delete, modify

lines_added INT size of change [add, modify]

lines_deleted INT size of change [delete, modify]

lines_modified INT size of change [modify]

Table 10. Metrics Data (Vector Version, example metrics)

Attribute Datatype Description

systemid STRING Unique id of the analyzed
system

Tooled STRING Metric Tool

timestamp TIMESTAMP (e.g. ISO8601) time of measurement

Scope STRING The metric scope: system, file,
class/interface, method, …

filename STRING pathname of the analyzed file

classname STRING Class or Interface name, if
applicable

methodname STRING method name, if applicable

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 55

LOC INT Lines of Code

LCOM INT Lines of Comment

STMT INT Number of Statements

MCC INT Cyclomatic Complexity

WMC INT Weighted Methods per Class

DIT INT Depth of Inheritance Tree

NOC INT Number of Children

CBO INT Coupling between Object
Classes

RFC INT Response for Class

LCOM FLOAT Lack of Cohesion of Methods

Any other relevant code
metrics could be added

… …

Table 11. Metrics Data (Single Metric Version). For each metric e.g., DIT, LCOM

Attribute Datatype Description

Systemid STRING Unique id of the analyzed
system

Tooled STRING Metric Tool

timestamp TIMESTAMP (e.g. ISO8601) time of measurement

Scope STRING The metric scope: system, file,
class/interface, method …

Filename STRING pathname of the analyzed file

classname STRING Class or Interface name, if
applicable

methodname STRING method name, if applicable

metricname STRING Name of the Metric

Value NUMERIC Value of the Metric

Table 12. Task Data

Attribute Datatype Description

task_id STRING Unique task id

person_id STRING Person responsible

system_id STRING System the task is related to

issue_id STRING Issue the task is related to, if
applicable

Created TIMESTAMP Time the task was created

Started TIMESTAMP Time the task was started

Finished TIMESTAMP Time the task was finished

effort_planned FLOAT Effort planned for the task

effort_used FLOAT Effort used for the task

effort_remain FLOAT Effort remaining for the task

Status STRING tbd.

Table 13. Issue Data (useful if they write issue_id during commit info). Maybe to be merged with task

Attribute Datatype Description

issue_id STRING Unique issue id

system_id STRING System the task is related to

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no 732253.

Copyright © Q-Rapids consortium – All rights reserved 56

Table 14. Duplication Data (Software Clones)

Attribute Datatype Description

system_id STRING Unique task id

tool_id STRING Tool used to measure
duplication

timestamp TIMESTAMP Detection Runtime

duplication_id STRING Id of duplication group

filename STRING File containing duplicated Lines

startline INTEGER Line within file the duplication
starts

endline INTEGER Line within file the duplication
ends

length INTEGER Length of duplicated block

Table 15. Testing data.

Attribute Datatype Description

Environment_id STRING System versioned

system_id STRING Unique task id

Result_test INT Result code

Coverage FLOAT Test coverage percetage

Table 16. Usage data.

Attribute Datatype Description

system_id STRING Unique task id

timestamp TIMESTAMP (e.g. ISO8601) time of measurement

line_number LONG Line of code

Feature_id STRING Unique feature id

timestamp TIMESTAMP (e.g. ISO8601) time of measurement

timestamp TIMESTAMP (e.g. ISO8601) time of measurement

Table 17. Crashes and errors data.

Attribute Datatype Description

system_id STRING Unique task id

timestamp TIMESTAMP (e.g. ISO8601) time of measurement

line_number INT Line of code

Type STRING e.g. Bug, Vulnerability, Smell, …

Severity STRING e.g. Blocker, Critical, Major, …

reporter_id STRING Person that reported the issue

person_id STRING Person responsible for
resolving the issue

Created TIMESTAMP Time the issue was created

resolution FLOAT e.g. unresolved, False Positive,
Removed, Fixed, No Fix

